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Logistics 

• I am working on giving all of you feedback on your project 
proposals
• You get full points for a good and solid proposal
• You get 50% if I still have questions or the project proposal is not good

• But you can reply to my comment or resubmit to get 100% later

• Quiz 2 grade should be out soon
• We are considering letting you drop the lowest at the end of the semester

• Today: pretraining LLMs



What’s is pretraining

• Transformer is a powerful and efficient architecture. As we 
discussed last time, with A LOT of data, it can have impressive 
language ability

• So today, we will talk about HOW to obtain this impressive 
language ability.
• We know “with a lot of data”, but how to actually train a model to do this

• “Pre”- training, implies, this is the first step before a more targeted 
“training”



Three stages of training in LLMs



Three stages of training a LLM

• Stage 1: 

Pretraining:  model is trained to incrementally predict the next 
word with an enormous text corpora. The model uses the cross-
entropy loss, and that loss is backpropagated all the way through 
the network. 
• The training data is usually (the cleaned up) text from the internet. 

Sometimes companies have their own secret sauce data (proprietary 
data).

• The result is a model that is very good at next word prediction and can 
generate text.



Three stages of training a LLM

• Stage 2: 

Instruction tuning: also called supervised finetuning (SFT). Also 
use cross-entropy loss to follow instructions for different NLP 
downstream tasks: QA, summarization, writing code, machine 
translation, etc.
• Train on task specific corpus



Three stages of training an LLM

• Stage 3: 

Alignment: aka preference alignment. The model is trained to be 
maximally helpful and less harmful. 
• The model is given preference data, which consists of a context followed 

by accepted and rejected continuations. 
• The model is then trained by reinforcement learning or other reward-

based algorithms ()RLHF, DPO, etc.). We will cover this in future lectures.



Pretraining

• The idea pretraining an LM is the same idea of self-training/self-
supervision in our earlier lectures, in which we mentioned in the 
context of word2vec embedding
• The sentences themselves ARE the data we use to learn next word 

prediction, without us explicitly making labeled data

• We again use teaching forcing: instead of using the predicted 
word to continue training, we are using the ground-truth word to 
prevent derailing.



The data we use for pretraining



Data used for pretraining

• Mostly text from the web
• Many commercial companies have their own secret sauce data 

(proprietary data)
• Data can directly affect performance!
• LLM outputs will also reflect the limitations

and biases in the data

Image from https://ceufast.com/blog/you-are-what-you-eat 
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Data used for pretraining

• Because these corpora (scraped from the web) are so large, they 
already contains examples we need for NLP tasks:
• FAQ on a website: QA task
• Translation
• Summary 
• Etc.



Common pretraining corpus: Common Crawl

• Text is taken from automatially-crawled web pages
• Various versions: 

• Colossal Clean Crawled Corpus (C4): 156 Billion tokens of English
• Filtered data: deduplicated, removed non-natural language like code, removed 

sentences with offensive words from a blocklist
• Consists of patent text documents, Wikipedia, and news sites

• Released in 2020



Common pretraining corpus: The Pile

• 825GB English text corpus
• Text from the web, books, and Wikipedia
• Constructed by publicly released code
• Released in 2020



The Pile: a pretraining corpus

Figure 1: Treemap of Pile components by effectivesize.

troduce a new filtered subset of Common Crawl,

Pile-CC, with improved extraction quality.

Through our analyses, weconfirm that the Pile is

significantly distinct from pure Common Crawl

data. Additionally, our evaluations show that the

existing GPT-2 and GPT-3 models perform poorly

on many components of thePile, and that models

trained on the Pile significantly outperform both

raw and filtered Common Crawl models. To com-

plement the performance evaluations, we also per-

form an exploratory analysis of the text within the

Pile to provide a detailed picture of the data. We

hope that our extensive documentation of the con-

struction and characteristics of the Pile will help

researchers make informed decisions about poten-

tial downstream applications.

Finally, we make publicly available the preprocess-

ing code for the constituent datasets of the Pile and

the code for constructing alternative versions2. In

the interest of reproducibility, we also document

all processing performed on each dataset (and the

Pile as awhole) in asmuch detail as possible. For

further details about the processing of each dataset,

seeSection 2 and Appendix C.

2ht t ps: / / gi t hub. com/ El eut her AI /
t he- pi l e

1.1 Contr ibutions

The core contributions of this paper are:

1. The introduction of a 825.18 GiB english-

language dataset for language modeling com-

bining 22 diverse sources.

2. The introduction of 14 new language model-

ing datasets, which we expect to be of inde-

pendent interest to researchers.

3. Evaluations demonstrating significant im-

provements across many domains by GPT-2-

sized models trained on this new dataset, com-

pared to training on CC-100 and raw Common

Crawl.

4. The investigation and documentation of this

dataset, which wehope will better inform re-

searchers about how to use it as well asmoti-

vate them to undertake similar investigations

of their own data.

2 The Pile Datasets

ThePile iscomposed of 22 constituent sub-datasets,

asshown in Table1. Following Brown et al. (2020),

we increase the weights of higher quality compo-

nents, with certain high-quality datasets such as

Wikipedia being seen up to 3 times (“epochs”) for

2

webacademics books

Pre 1919 
English 

Language 
Books from 

Project 
Gutenberg

dialog



Common pretraining corpus: Dolma

• Also English
• Created with public tools
• 3 trillion tokens 
• Web text, academic papers, code, books, encyclopedic materials, 

social media
• More recent, released in 2024



GPT3 training data

• ~ 60% from common crawl
• ~ 22% from WebText2 (openAI’s own curated data)
• ~ 8% from Books1 (public)
• ~ 8% from Books2 (some licensed)
• ~ 3% from Wikipedia



Olmo training data

• Pretraining data: Dolma (open source, open weight)

https://arxiv.org/abs/2402.00838 

https://arxiv.org/abs/2402.00838


Filtering for quality and safety

Quality is subjective
▪ Many LLMs attempt to match Wikipedia, books, particular websites
▪ Need to remove boilerplate, adult content
▪ Deduplication at many levels (URLs, documents, even lines)

Safety also subjective
▪ Toxicity detection is important, although that has mixed results
▪ Can mistakenly flag data written in dialects like African American English



There are problems with scraping from the web

Copyright: much of the text in these datasets is copyrighted
• Not clear if fair use doctrine in US allows for this use
• This remains an open legal question across the world

Data consent
• Website owners can indicate they don't want their site crawled

Privacy: 
• Websites can contain private IP addresses and phone numbers

Skew:
• Training data is disproportionately generated by authors from the US which 

probably skews resulting topics and opinions



Safety and privacy

• Scenario 1: If personal data is in the training data, it’s really 
difficult to remove that knowledge from an LLM

• Scenario 2: Commercial models often use the users chat history 
to train their model. Therefore, personal details, names, locations 
might be leaked

• Scenario 3: Teens are still learning how to evaluate information 
critically, therefore more likely to be subjected to misinformation.

• Others: emotional dependence 



Copyright 



Finetuning
For a new domain



Finetuning for adaptation to new domains

• What happens if we need our LLM to work well on a 
domain it didn't see in pretraining?

• Perhaps some specific medical or legal domain?
• Or maybe a multilingual LM needs to see more data on 

some language that was rare in pretraining?



Finetuning 

• We continue training on domain-specific data or any relevant data for your 
task

• This process of taking a fully pre-trained model and running additional 
training passes using the cross-entropy loss on some new data is called 
finetuning

• During finetuning, some or all of its parameters will be adapted to some 
new data.

• Sometimes called continued pretraining



Finetuning

Fine-

tuning 

Data
Pretraining Data

Pretraining

… … …

Fine-tuning

… … …

Pretrained LM Fine-tuned LM



Parameter Efficient Fine Tuning

• LLMs are large, if we tune all the parameters, it’s very costly in 
terms of memory and time.

• Alternatively, we only fine-tune some parameters → parameter-
efficient fine tuning (PEFT)
• One of the PEFT methods is called Low-Rank Adaptation (LoRA)



LoRA-tuning

• Recall that transformers has many dense layers that perform 
matrix multiplication, e.g. 𝑊𝑄 , 𝑊𝐾, 𝑊𝑉, 𝑊𝑂  in the attention 
computation

• Instead of updating these layers during finetuning, we freeze these 
layers, and instead, update a low-rank approximation that has 
fewer parameters.



LoRA

• Consider a matrix 𝑊 of dimensionality 𝑁 ×  𝑑 , it needs to be 
updated during finetuning via gradient descent

• Normally we update using 𝑊 =  𝑊0 +  Δ𝑊 

• In LoRA, we instead update two matrices 𝐴 and 𝐵, where 𝐴 has 
size [𝑁 ×  𝑟] , and 𝐵 has size 𝑟 × 𝑑 , and Δ𝑊 = 𝐴𝐵 
• We choose 𝑟 to be really small, 𝑟 ≪ min(𝑑, 𝑁)

• 𝑊𝑜 is the frozen base weight from the pretrained model, and Δ𝑊 =
𝐴𝐵 is learned low-rank correction

• We basically decompose weight update to a low-rank form



LoRA

• You need to decide which weight matrices will have low-rank 
adapters
• E.g. common choices are 𝑊𝑄 , 𝑊𝐾, 𝑊𝑉, sometimes the feed-forward 

layers
• For each chosen matrix, LoRA adds trainable A, B matrices such that 

Δ𝑊 = 𝐴𝐵 

• Recall the dimensionality: N x r, r x d = N x d
• How to decide r? 

• Lower r: faster!
• Higher r: more parameters



LoRA in huggingface 

𝑊 =  𝑊0 +
𝛼

𝑟
 𝐴𝐵 



Other fine-tuning methods

Quantized LoRA-tuning (QLoRA), a variation of LoRA
• Even more memory-efficient
• First, pretrained model is quantized to reduce memory and GPU 

requirement
• E.g. full preicision FP16 to 4 bit

• Then on top of this, quantized model, we use LoRA

• So now you can finetuning an even bigger model



From huggingface 

https://huggingface.co/docs/peft/main/en/developer_guide
s/quantization 

https://huggingface.co/docs/peft/main/en/developer_guides/quantization
https://huggingface.co/docs/peft/main/en/developer_guides/quantization


And many other PEFT

• Prefix tuning
• Prompt-tuning 
• Not covered in this class, but you can read about it if you are 

interested



When to train when to fine-tune
How to decide the best strategy for your project or your future NLP work



So many names, what’s the difference

• Pretraining
• Fine-tuning
• Training from scratch



Strategy 

1. What’s the model?
a) If it’s already pretrained, you can usually just finetune
b) If you want to build your own model (say, a transformer), see second 

step

2. What’s the size of the model?
3. What’s your task? What’s the data? Does it match the domain 

coverage of the training data?



Advice 

Generally, I don’t recommend training any kind of transformers from 
scratch or doing your own pretraining. 

It takes a lot to even get good language abilities. And probably not 
possible with free-tier Google Colab. But there are exceptions, so it 
depends on your task!

I highly recommend LoRA or other kinds of finetuning.

If you haven’t heard of Hugging face, it’s a great place to look for models 
and datasets.

https://huggingface.co/models


Have a nice weekend!
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