
Pretraining
CS 6120 Natural Language Processing

Northeastern University

Si Wu

Some materials borrowed rom Jurafsky & Martin Chapter 7

Logistics

• I am working on giving all of you feedback on your project
proposals
• You get full points for a good and solid proposal
• You get 50% if I still have questions or the project proposal is not good

• But you can reply to my comment or resubmit to get 100% later

• Quiz 2 grade should be out soon
• We are considering letting you drop the lowest at the end of the semester

• Today: pretraining LLMs

What’s is pretraining

• Transformer is a powerful and efficient architecture. As we
discussed last time, with A LOT of data, it can have impressive
language ability

• So today, we will talk about HOW to obtain this impressive
language ability.
• We know “with a lot of data”, but how to actually train a model to do this

• “Pre”- training, implies, this is the first step before a more targeted
“training”

Three stages of training in LLMs

Three stages of training a LLM

• Stage 1:

Pretraining: model is trained to incrementally predict the next
word with an enormous text corpora. The model uses the cross-
entropy loss, and that loss is backpropagated all the way through
the network.
• The training data is usually (the cleaned up) text from the internet.

Sometimes companies have their own secret sauce data (proprietary
data).

• The result is a model that is very good at next word prediction and can
generate text.

Three stages of training a LLM

• Stage 2:

Instruction tuning: also called supervised finetuning (SFT). Also
use cross-entropy loss to follow instructions for different NLP
downstream tasks: QA, summarization, writing code, machine
translation, etc.
• Train on task specific corpus

Three stages of training an LLM

• Stage 3:

Alignment: aka preference alignment. The model is trained to be
maximally helpful and less harmful.
• The model is given preference data, which consists of a context followed

by accepted and rejected continuations.
• The model is then trained by reinforcement learning or other reward-

based algorithms ()RLHF, DPO, etc.). We will cover this in future lectures.

Pretraining

• The idea pretraining an LM is the same idea of self-training/self-
supervision in our earlier lectures, in which we mentioned in the
context of word2vec embedding
• The sentences themselves ARE the data we use to learn next word

prediction, without us explicitly making labeled data

• We again use teaching forcing: instead of using the predicted
word to continue training, we are using the ground-truth word to
prevent derailing.

The data we use for pretraining

Data used for pretraining

• Mostly text from the web
• Many commercial companies have their own secret sauce data

(proprietary data)
• Data can directly affect performance!
• LLM outputs will also reflect the limitations

and biases in the data

Image from https://ceufast.com/blog/you-are-what-you-eat

https://ceufast.com/blog/you-are-what-you-eat
https://ceufast.com/blog/you-are-what-you-eat
https://ceufast.com/blog/you-are-what-you-eat
https://ceufast.com/blog/you-are-what-you-eat
https://ceufast.com/blog/you-are-what-you-eat
https://ceufast.com/blog/you-are-what-you-eat
https://ceufast.com/blog/you-are-what-you-eat
https://ceufast.com/blog/you-are-what-you-eat
https://ceufast.com/blog/you-are-what-you-eat

Data used for pretraining

• Because these corpora (scraped from the web) are so large, they
already contains examples we need for NLP tasks:
• FAQ on a website: QA task
• Translation
• Summary
• Etc.

Common pretraining corpus: Common Crawl

• Text is taken from automatially-crawled web pages
• Various versions:

• Colossal Clean Crawled Corpus (C4): 156 Billion tokens of English
• Filtered data: deduplicated, removed non-natural language like code, removed

sentences with offensive words from a blocklist
• Consists of patent text documents, Wikipedia, and news sites

• Released in 2020

Common pretraining corpus: The Pile

• 825GB English text corpus
• Text from the web, books, and Wikipedia
• Constructed by publicly released code
• Released in 2020

The Pile: a pretraining corpus

Figure 1: Treemap of Pile components by effectivesize.

troduce a new filtered subset of Common Crawl,

Pile-CC, with improved extraction quality.

Through our analyses, weconfirm that the Pile is

significantly distinct from pure Common Crawl

data. Additionally, our evaluations show that the

existing GPT-2 and GPT-3 models perform poorly

on many components of thePile, and that models

trained on the Pile significantly outperform both

raw and filtered Common Crawl models. To com-

plement the performance evaluations, we also per-

form an exploratory analysis of the text within the

Pile to provide a detailed picture of the data. We

hope that our extensive documentation of the con-

struction and characteristics of the Pile will help

researchers make informed decisions about poten-

tial downstream applications.

Finally, we make publicly available the preprocess-

ing code for the constituent datasets of the Pile and

the code for constructing alternative versions2. In

the interest of reproducibility, we also document

all processing performed on each dataset (and the

Pile as awhole) in asmuch detail as possible. For

further details about the processing of each dataset,

seeSection 2 and Appendix C.

2ht t ps: / / gi t hub. com/ El eut her AI /
t he- pi l e

1.1 Contr ibutions

The core contributions of this paper are:

1. The introduction of a 825.18 GiB english-

language dataset for language modeling com-

bining 22 diverse sources.

2. The introduction of 14 new language model-

ing datasets, which we expect to be of inde-

pendent interest to researchers.

3. Evaluations demonstrating significant im-

provements across many domains by GPT-2-

sized models trained on this new dataset, com-

pared to training on CC-100 and raw Common

Crawl.

4. The investigation and documentation of this

dataset, which wehope will better inform re-

searchers about how to use it as well asmoti-

vate them to undertake similar investigations

of their own data.

2 The Pile Datasets

ThePile iscomposed of 22 constituent sub-datasets,

asshown in Table1. Following Brown et al. (2020),

we increase the weights of higher quality compo-

nents, with certain high-quality datasets such as

Wikipedia being seen up to 3 times (“epochs”) for

2

webacademics books

Pre 1919
English

Language
Books from

Project
Gutenberg

dialog

Common pretraining corpus: Dolma

• Also English
• Created with public tools
• 3 trillion tokens
• Web text, academic papers, code, books, encyclopedic materials,

social media
• More recent, released in 2024

GPT3 training data

• ~ 60% from common crawl
• ~ 22% from WebText2 (openAI’s own curated data)
• ~ 8% from Books1 (public)
• ~ 8% from Books2 (some licensed)
• ~ 3% from Wikipedia

Olmo training data

• Pretraining data: Dolma (open source, open weight)

https://arxiv.org/abs/2402.00838

https://arxiv.org/abs/2402.00838

Filtering for quality and safety

Quality is subjective
▪ Many LLMs attempt to match Wikipedia, books, particular websites
▪ Need to remove boilerplate, adult content
▪ Deduplication at many levels (URLs, documents, even lines)

Safety also subjective
▪ Toxicity detection is important, although that has mixed results
▪ Can mistakenly flag data written in dialects like African American English

There are problems with scraping from the web

Copyright: much of the text in these datasets is copyrighted
• Not clear if fair use doctrine in US allows for this use
• This remains an open legal question across the world

Data consent
• Website owners can indicate they don't want their site crawled

Privacy:
• Websites can contain private IP addresses and phone numbers

Skew:
• Training data is disproportionately generated by authors from the US which

probably skews resulting topics and opinions

Safety and privacy

• Scenario 1: If personal data is in the training data, it’s really
difficult to remove that knowledge from an LLM

• Scenario 2: Commercial models often use the users chat history
to train their model. Therefore, personal details, names, locations
might be leaked

• Scenario 3: Teens are still learning how to evaluate information
critically, therefore more likely to be subjected to misinformation.

• Others: emotional dependence

Copyright

Finetuning
For a new domain

Finetuning for adaptation to new domains

• What happens if we need our LLM to work well on a
domain it didn't see in pretraining?

• Perhaps some specific medical or legal domain?
• Or maybe a multilingual LM needs to see more data on

some language that was rare in pretraining?

Finetuning

• We continue training on domain-specific data or any relevant data for your
task

• This process of taking a fully pre-trained model and running additional
training passes using the cross-entropy loss on some new data is called
finetuning

• During finetuning, some or all of its parameters will be adapted to some
new data.

• Sometimes called continued pretraining

Finetuning

Fine-

tuning

Data
Pretraining Data

Pretraining

… … …

Fine-tuning

… … …

Pretrained LM Fine-tuned LM

Parameter Efficient Fine Tuning

• LLMs are large, if we tune all the parameters, it’s very costly in
terms of memory and time.

• Alternatively, we only fine-tune some parameters → parameter-
efficient fine tuning (PEFT)
• One of the PEFT methods is called Low-Rank Adaptation (LoRA)

LoRA-tuning

• Recall that transformers has many dense layers that perform
matrix multiplication, e.g. 𝑊𝑄 , 𝑊𝐾, 𝑊𝑉, 𝑊𝑂 in the attention
computation

• Instead of updating these layers during finetuning, we freeze these
layers, and instead, update a low-rank approximation that has
fewer parameters.

LoRA

• Consider a matrix 𝑊 of dimensionality 𝑁 × 𝑑 , it needs to be
updated during finetuning via gradient descent

• Normally we update using 𝑊 = 𝑊0 + Δ𝑊

• In LoRA, we instead update two matrices 𝐴 and 𝐵, where 𝐴 has
size [𝑁 × 𝑟] , and 𝐵 has size 𝑟 × 𝑑 , and Δ𝑊 = 𝐴𝐵
• We choose 𝑟 to be really small, 𝑟 ≪ min(𝑑, 𝑁)

• 𝑊𝑜 is the frozen base weight from the pretrained model, and Δ𝑊 =
𝐴𝐵 is learned low-rank correction

• We basically decompose weight update to a low-rank form

LoRA

• You need to decide which weight matrices will have low-rank
adapters
• E.g. common choices are 𝑊𝑄 , 𝑊𝐾, 𝑊𝑉, sometimes the feed-forward

layers
• For each chosen matrix, LoRA adds trainable A, B matrices such that

Δ𝑊 = 𝐴𝐵

• Recall the dimensionality: N x r, r x d = N x d
• How to decide r?

• Lower r: faster!
• Higher r: more parameters

LoRA in huggingface

𝑊 = 𝑊0 +
𝛼

𝑟
 𝐴𝐵

Other fine-tuning methods

Quantized LoRA-tuning (QLoRA), a variation of LoRA
• Even more memory-efficient
• First, pretrained model is quantized to reduce memory and GPU

requirement
• E.g. full preicision FP16 to 4 bit

• Then on top of this, quantized model, we use LoRA

• So now you can finetuning an even bigger model

From huggingface

https://huggingface.co/docs/peft/main/en/developer_guide
s/quantization

https://huggingface.co/docs/peft/main/en/developer_guides/quantization
https://huggingface.co/docs/peft/main/en/developer_guides/quantization

And many other PEFT

• Prefix tuning
• Prompt-tuning
• Not covered in this class, but you can read about it if you are

interested

When to train when to fine-tune
How to decide the best strategy for your project or your future NLP work

So many names, what’s the difference

• Pretraining
• Fine-tuning
• Training from scratch

Strategy

1. What’s the model?
a) If it’s already pretrained, you can usually just finetune
b) If you want to build your own model (say, a transformer), see second

step

2. What’s the size of the model?
3. What’s your task? What’s the data? Does it match the domain

coverage of the training data?

Advice

Generally, I don’t recommend training any kind of transformers from
scratch or doing your own pretraining.

It takes a lot to even get good language abilities. And probably not
possible with free-tier Google Colab. But there are exceptions, so it
depends on your task!

I highly recommend LoRA or other kinds of finetuning.

If you haven’t heard of Hugging face, it’s a great place to look for models
and datasets.

https://huggingface.co/models

Have a nice weekend!

	Slide 1: Pretraining
	Slide 2: Logistics
	Slide 3: What’s is pretraining
	Slide 4: Three stages of training in LLMs
	Slide 5: Three stages of training a LLM
	Slide 6: Three stages of training a LLM
	Slide 7: Three stages of training an LLM
	Slide 8: Pretraining
	Slide 9: The data we use for pretraining
	Slide 10: Data used for pretraining
	Slide 11: Data used for pretraining
	Slide 12: Common pretraining corpus: Common Crawl
	Slide 13: Common pretraining corpus: The Pile
	Slide 14: The Pile: a pretraining corpus
	Slide 15: Common pretraining corpus: Dolma
	Slide 16: GPT3 training data
	Slide 17: Olmo training data
	Slide 18: Filtering for quality and safety
	Slide 19: There are problems with scraping from the web
	Slide 20: Safety and privacy
	Slide 21: Copyright
	Slide 22: Finetuning
	Slide 23: Finetuning for adaptation to new domains
	Slide 24: Finetuning
	Slide 25: Finetuning
	Slide 26: Parameter Efficient Fine Tuning
	Slide 27: LoRA-tuning
	Slide 28: LoRA
	Slide 29: LoRA
	Slide 30: LoRA in huggingface
	Slide 31: Other fine-tuning methods
	Slide 32: From huggingface
	Slide 33: And many other PEFT
	Slide 34: When to train when to fine-tune
	Slide 35: So many names, what’s the difference
	Slide 36: Strategy
	Slide 37: Advice
	Slide 38: Have a nice weekend!

