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Logistics 

• The first coding assignment is due midnight 
• If you for some reason enroll my session after lecture on Tuesday 

and didn’t take the first quiz, come and see me after class
• Reminders:

• Bring a pen and student ID to lecture 
• Ask your questions on Ed Discussion since there are many repeated 

questions

Today:
• We will talk about the basics of neural networks (NN)
• There will be more discussion breaks for you to talk with the people 

around you and find a partner for your project



Transition from linear to non-linear models

• So far we’ve learned some linear models
• Logistic regression
• Naïve Bayes

• We mentioned single-layer perceptron which is linear
• It’s activation function is a Heaviside step function
• It’s decision boundary is linear

• But multi-layer perceptron is non-linear
• Fully connected neurons with non-linear activation functions

• Backpropagation requires differentiable functions (ReLU, tanh, sigmoid), and step 
function is not differentiable!

• Can distinguish data that are not linearly separable 



Transition from linear to non-linear models

• For the rest of the semester, we will talk about non-linear models 
(FFNN, RNN, transformers) that can generally perform better on 
more complex pattern recognition tasks

• As you’ll see in this lecture, we are still using this general linear 
combination formula which is what we used for logistic regression
• Although the activation function is different now 

• But should you always choose the more complex model… on all 
tasks??



Feedforward neural networks



Figure from 
https://scienceexchange.caltech.edu/t
opics/neuroscience/neurons 

https://scienceexchange.caltech.edu/topics/neuroscience/neurons
https://scienceexchange.caltech.edu/topics/neuroscience/neurons


History and background of NNs
• 1943 Warren McCulloch and Walter Pitts proposed a mathematical model of a neuron.
• 1958 Rosenblatt introduced the perceptron but can only solve linearly separable problems.

• The XOR problem (Minsky and Papert 1969)
• …
• 1986 Rumelhart, Hinton, and William popularized Backpropagation for training FFNNs.
• 80s, CNN
• RNN, LSTM
• Deep learning

• 2012, AlexNet (Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton)
• 2014, GAN (Ian Goodfellow et al.)

• Transformer: BERT, GPT, LLM…

• Mathematics, cognitive science, psychology, linguistics, computer vision, NLP… Learning 
from other fields is often the key to scientific breakthrough!



XOR gate 

• Exclusive OR

XOR gate figure from https://www.allelcoelec.com/blog/XOR-Gate-Explained-
Symbol,Truth-Table,Construction-Methods,and-
Applications.html?srsltid=AfmBOorLU85xVdi7Yyl7k_GGJMzPeu4xWw0KYg0YsVRQRW
1j1oRh0FIR
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XOR is not a linearly separable function!



What’s feedforward neural network?

• Feedforward neural network:
• Input layer → hidden layer(s) → output layer
• “Feedforward”: only goes forward. No cycles or feedback loops

• This seems trivial but we will soon learn about recurrent neural networks (RNN) 
which have feedback loops through hidden states

• Stacks of fully connected layers: generally, each neuron in a layer is 
connected to all neurons in the next layers

• Multi-layer perceptron: a misnomer of feedforward neural 
network 



Feedforward neural network (FFNN) 

• Powerful model
• Even just one hidden layer, it can learn any functions
• The non-linearity in FFNNs allows them to perform on more complex 

classification and language modeling tasks than linear models
• GPU-efficient

• Fully connected dense layer → matrix multiplications, what GPUs are 
specialized to do!

• Parallelizable computation: 
• e.g. you can compute each neuron’s output in parallel   

• Deep neural networks (DNNs):
• “deep”→ many layers

• Also where the name “deep learning” is from
• We will learn more about them: BERT, transformers



Where to get input features for FFNN?

• Hand-built, designed features
• Learned features like what we learned from last lecture (on word 

embeddings)
• Word2vec (skip-gram)

• In the future, when we learn about neural nets that are deep, we 
will learn more about how to learn features automatically 



The anatomy of a neural network
…Or maybe we should say architecture



The architecture of a neural network

• Components
• Input layer 
• Hidden layers 

• Each unit has weights and bias
• Fully connected: each unit is taking the output from all previous units and output 

goes to all units in the next layers
• We use a matrix W and a vector b to represent the weights and bias for a single 

hidden layer
• Output layer

• We will go over some examples



Non-linear activation function

• Sigmoid
• Differentiable 

• The tanh function – a variant of sigmoid but better
• Ranges from -1 to 1
• Differentiable 

• Rectified linear unit (ReLU)
• Most commonly used
• Differentiable everywhere except x=0



The sigmoid function

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGEMODELS

7.1 Units

Thebuilding block of aneural network is asingle computational unit. A unit takes

a set of real valued numbers as input, performs some computation on them, and

produces an output.

At its heart, a neural unit is taking aweighted sum of its inputs, with one addi-

tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weightsw1...wn and a bias b, so theweighted sum z can be

represented as:

z= b+
X

i

wixi (7.1)

Often it’smoreconvenient to expressthisweighted sumusing vector notation; recall

from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ ll talk about z in termsof aweight vector w, a scalar bias b, and an input vector

x, andwe’ ll replace thesumwith theconvenient dot product:

z= w·x+ b (7.2)

Asdefined in Eq. 7.2, z is just areal valued number.

Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as

the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for thenodeisin fact thefinal output of thenetwork, whichwe’ ll generally

call y. So thevaluey isdefined as:

y= a= f (z)

We’ ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,

and the rectified linear ReLU) but it’s pedagogically convenient to start with the

sigmoid function sincewesaw it in Chapter 5:sigmoid

y= s (z) =
1

1+ e− z
(7.3)

Thesigmoid (shown in Fig. 7.1) hasanumber of advantages; it maps theoutput

into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s

differentiable, which aswesaw in Section ??will behandy for learning.

Figure7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is

nearly linear around 0 but outlier valuesget squashed toward 0 or 1.

Recall sigmoid function from 
previous lecture:

0 < y < 1



The tanh function 

Range: 

-1 < tanh x < 1

Figure from https://www.mathworks.com/help/matlab/ref/double.tanh.html



The ReLU function

Figure from https://docs.pytorch.org/docs/stable/generated/torch.nn.ReLU.html 



where do we apply these activation functions 
and why do we need them?
• It’s applied at every hidden layer in a FFNN

• To introduce non-linearity, other wise it will still be a linear model no 
matter how many you stack! 

• Output layer activation function? Depends on the task!
• Binary classification: sigmoid
• Multi-class classification: softmax
• None or linear function: if you need a real number
• Other functions: depends on the specific tasks, think about the output 

range of the function



Stacking linear functions without non-linear 
activation functions



Replacing the bias term with a dummy node
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𝑁𝑜𝑤 𝐿𝑒𝑡 𝑤0 = 𝑏 𝑎𝑛𝑑 𝑥0 = 1

Let go over it step by step

Before, we have bias term, so each 
hidden unit’s weighted sum is



Replacing the bias term with a dummy node
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Equations for NN classification with hand features



Two-Layer Network with softmax output

j

𝑥𝑖
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W

xnx1 +1

b

hidden units

Input layer

Output layer
z = 𝑈ℎ
𝑦 = softmax(𝑧)

WjiEach row of W is ℎ𝑗   weights 
for each input feature

Wji   is the weight of input 𝑥𝑖  
to hidden unit at ℎ𝑗



n input features, m neuron’s in this layer

Each row: 
All input features’ 
weights at this one 
neuron 
Here, it’s neuron 
position 2



Training neural nets

• Like before, with supervised training we need
• Loss function: e.g. cross-entropy loss
• Update weights and bias: gradient descent

• We need to know the partial derivative of each layer’s weights, that 
gets complicated!
→ Error backpropagation or backward differentiation  



Backpropagation 



Intuition: training a 2-layer Network

U

W

xnx1

System output ො𝑦 

Actual answer 𝑦

Training instance

Loss function L( ො𝑦, 𝑦)

Forward pass

Backward pass

To compute the 
gradients we 
need to update 
the weights



Intuition: Training a 2-layer network
• For every training tuple (𝑥, 𝑦)

•Run forward computation to find our estimate ො𝑦
•Run backward computation to update weights: 

• For every output node
• Compute loss 𝐿 between true 𝑦 and the estimated ො𝑦

• For every weight 𝑤 from hidden layer to the output layer
• Update the weight
• For every hidden node
• Assess how much blame it deserves for the current answer
• For every weight 𝑤 from input layer to the hidden layer
• Update the weight

29



Vanishing gradient

• During backprop, we compute gradients of the loss wrt weights
• If the net is deep, the gradient is computed via the chain rule
• If the derivative of the activation function is < 1, multiplying many such 

derivatives will make the final product exponentially smaller!
→hence the name vanishing!
For example, sigmoid ranges between 0 to 1, and its derivative is very small, so it’s 
very bad!
Tanh is a little better,
ReLU derivative is either 0 or 1, so better than both sigmoid and tanh

As the gradient approaches 1, weights in earlier layer barely get updated!



Examples of using neural network 
for NLP tasks



Talk to your neighbors:

What can you use neural networks for?



Use cases for feedforward networks

• Classification:
• Sentiment analysis
• Spam detection
• Word / token classification, PoS tagging

• Language modeling
• Next word prediction, predicting sequence of words



Multiclass classification with neural network

Emotion classification

• Input: text messages
• Desired output: emotion 

• 7 classes: anger, disgust, fear, joy, neutrality, sadness, surprise

• Supervised training: we have the ground truth labels, and split data into 
train/val/test

What would a neural network look like if we have 2 hidden layers?
(input has 5 features), discuss with your neighbor



Input layer Hidden layer 1 Hidden layer 2 Output layer

P(anger)

P(surprise)

P(neutrality)

Number of 
features = 5

softmax

P(joy)

P(disgust)

P(sadness)

P(fear)

7 classes



Why Neural LMs work better than N-gram LMs

• Training data:
• We've seen:  I have to make sure that the cat gets fed. 
• Never seen:   dog gets fed
• Test data:
• I forgot to make sure that the dog gets ___
• N-gram LM can't predict "fed"!
• Neural LM can use similarity of "cat" and "dog" embeddings to 

generalize and predict “fed” after dog

But we still need to handle OOV. Although no smoothing for NN.
Also NN takes longer to train!



More about neural networks

• We will learn about recurrent neural networks and transformers in 
future lectures

• And we will talk more about their applications then!



Other textbooks specific to machine learning 
and deep learning

But we focus more on the 
applications on language-
related tasks in this class!
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