
Intro to Neural Networks

CS 6120 Natural Language Processing
Northeastern University

Si Wu

Borrowed some slides from Jurafsky and Martin Chapter 6

Logistics

• The first coding assignment is due midnight
• If you for some reason enroll my session after lecture on Tuesday

and didn’t take the first quiz, come and see me after class
• Reminders:

• Bring a pen and student ID to lecture
• Ask your questions on Ed Discussion since there are many repeated

questions

Today:
• We will talk about the basics of neural networks (NN)
• There will be more discussion breaks for you to talk with the people

around you and find a partner for your project

Transition from linear to non-linear models

• So far we’ve learned some linear models
• Logistic regression
• Naïve Bayes

• We mentioned single-layer perceptron which is linear
• It’s activation function is a Heaviside step function
• It’s decision boundary is linear

• But multi-layer perceptron is non-linear
• Fully connected neurons with non-linear activation functions

• Backpropagation requires differentiable functions (ReLU, tanh, sigmoid), and step
function is not differentiable!

• Can distinguish data that are not linearly separable

Transition from linear to non-linear models

• For the rest of the semester, we will talk about non-linear models
(FFNN, RNN, transformers) that can generally perform better on
more complex pattern recognition tasks

• As you’ll see in this lecture, we are still using this general linear
combination formula which is what we used for logistic regression
• Although the activation function is different now

• But should you always choose the more complex model… on all
tasks??

Feedforward neural networks

Figure from
https://scienceexchange.caltech.edu/t
opics/neuroscience/neurons

https://scienceexchange.caltech.edu/topics/neuroscience/neurons
https://scienceexchange.caltech.edu/topics/neuroscience/neurons

History and background of NNs
• 1943 Warren McCulloch and Walter Pitts proposed a mathematical model of a neuron.
• 1958 Rosenblatt introduced the perceptron but can only solve linearly separable problems.

• The XOR problem (Minsky and Papert 1969)
• …
• 1986 Rumelhart, Hinton, and William popularized Backpropagation for training FFNNs.
• 80s, CNN
• RNN, LSTM
• Deep learning

• 2012, AlexNet (Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton)
• 2014, GAN (Ian Goodfellow et al.)

• Transformer: BERT, GPT, LLM…

• Mathematics, cognitive science, psychology, linguistics, computer vision, NLP… Learning
from other fields is often the key to scientific breakthrough!

XOR gate

• Exclusive OR

XOR gate figure from https://www.allelcoelec.com/blog/XOR-Gate-Explained-
Symbol,Truth-Table,Construction-Methods,and-
Applications.html?srsltid=AfmBOorLU85xVdi7Yyl7k_GGJMzPeu4xWw0KYg0YsVRQRW
1j1oRh0FIR

0

0 1

1

x1

x2

0

0 1

1

x1

x2

0

0 1

1

x1

x2

a) x1 AND x2 b) x1 OR x2 c) x1 XOR x2

?

XOR is not a linearly separable function!

What’s feedforward neural network?

• Feedforward neural network:
• Input layer → hidden layer(s) → output layer
• “Feedforward”: only goes forward. No cycles or feedback loops

• This seems trivial but we will soon learn about recurrent neural networks (RNN)
which have feedback loops through hidden states

• Stacks of fully connected layers: generally, each neuron in a layer is
connected to all neurons in the next layers

• Multi-layer perceptron: a misnomer of feedforward neural
network

Feedforward neural network (FFNN)

• Powerful model
• Even just one hidden layer, it can learn any functions
• The non-linearity in FFNNs allows them to perform on more complex

classification and language modeling tasks than linear models
• GPU-efficient

• Fully connected dense layer → matrix multiplications, what GPUs are
specialized to do!

• Parallelizable computation:
• e.g. you can compute each neuron’s output in parallel

• Deep neural networks (DNNs):
• “deep”→ many layers

• Also where the name “deep learning” is from
• We will learn more about them: BERT, transformers

Where to get input features for FFNN?

• Hand-built, designed features
• Learned features like what we learned from last lecture (on word

embeddings)
• Word2vec (skip-gram)

• In the future, when we learn about neural nets that are deep, we
will learn more about how to learn features automatically

The anatomy of a neural network
…Or maybe we should say architecture

The architecture of a neural network

• Components
• Input layer
• Hidden layers

• Each unit has weights and bias
• Fully connected: each unit is taking the output from all previous units and output

goes to all units in the next layers
• We use a matrix W and a vector b to represent the weights and bias for a single

hidden layer
• Output layer

• We will go over some examples

Non-linear activation function

• Sigmoid
• Differentiable

• The tanh function – a variant of sigmoid but better
• Ranges from -1 to 1
• Differentiable

• Rectified linear unit (ReLU)
• Most commonly used
• Differentiable everywhere except x=0

The sigmoid function

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGEMODELS

7.1 Units

Thebuilding block of aneural network is asingle computational unit. A unit takes

a set of real valued numbers as input, performs some computation on them, and

produces an output.

At its heart, a neural unit is taking aweighted sum of its inputs, with one addi-

tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weightsw1...wn and a bias b, so theweighted sum z can be

represented as:

z= b+
X

i

wixi (7.1)

Often it’smoreconvenient to expressthisweighted sumusing vector notation; recall

from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ ll talk about z in termsof aweight vector w, a scalar bias b, and an input vector

x, andwe’ ll replace thesumwith theconvenient dot product:

z= w·x+ b (7.2)

Asdefined in Eq. 7.2, z is just areal valued number.

Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as

the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for thenodeisin fact thefinal output of thenetwork, whichwe’ ll generally

call y. So thevaluey isdefined as:

y= a= f (z)

We’ ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,

and the rectified linear ReLU) but it’s pedagogically convenient to start with the

sigmoid function sincewesaw it in Chapter 5:sigmoid

y= s (z) =
1

1+ e− z
(7.3)

Thesigmoid (shown in Fig. 7.1) hasanumber of advantages; it maps theoutput

into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s

differentiable, which aswesaw in Section ??will behandy for learning.

Figure7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is

nearly linear around 0 but outlier valuesget squashed toward 0 or 1.

Recall sigmoid function from
previous lecture:

0 < y < 1

The tanh function

Range:

-1 < tanh x < 1

Figure from https://www.mathworks.com/help/matlab/ref/double.tanh.html

The ReLU function

Figure from https://docs.pytorch.org/docs/stable/generated/torch.nn.ReLU.html

where do we apply these activation functions
and why do we need them?
• It’s applied at every hidden layer in a FFNN

• To introduce non-linearity, other wise it will still be a linear model no
matter how many you stack!

• Output layer activation function? Depends on the task!
• Binary classification: sigmoid
• Multi-class classification: softmax
• None or linear function: if you need a real number
• Other functions: depends on the specific tasks, think about the output

range of the function

Stacking linear functions without non-linear
activation functions

Replacing the bias term with a dummy node
Before

x1 x2

y1

xn0
…

…

+1

b

…

U

W

y2
yn2

h1
h2 h3

hn1

𝑁𝑜𝑤 𝐿𝑒𝑡 𝑤0 = 𝑏 𝑎𝑛𝑑 𝑥0 = 1

Let go over it step by step

Before, we have bias term, so each
hidden unit’s weighted sum is

Replacing the bias term with a dummy node
After

x1 x2

y1

xn0
…

…

x0=1

…

U

W

y2
yn2

h1
h2 h3

hn1

Equations for NN classification with hand features

Two-Layer Network with softmax output

j

𝑥𝑖

U

W

xnx1 +1

b

hidden units

Input layer

Output layer
z = 𝑈ℎ
𝑦 = softmax(𝑧)

WjiEach row of W is ℎ𝑗 weights
for each input feature

Wji is the weight of input 𝑥𝑖
to hidden unit at ℎ𝑗

n input features, m neuron’s in this layer

Each row:
All input features’
weights at this one
neuron
Here, it’s neuron
position 2

Training neural nets

• Like before, with supervised training we need
• Loss function: e.g. cross-entropy loss
• Update weights and bias: gradient descent

• We need to know the partial derivative of each layer’s weights, that
gets complicated!
→ Error backpropagation or backward differentiation

Backpropagation

Intuition: training a 2-layer Network

U

W

xnx1

System output ො𝑦

Actual answer 𝑦

Training instance

Loss function L(ො𝑦, 𝑦)

Forward pass

Backward pass

To compute the
gradients we
need to update
the weights

Intuition: Training a 2-layer network
• For every training tuple (𝑥, 𝑦)

•Run forward computation to find our estimate ො𝑦
•Run backward computation to update weights:

• For every output node
• Compute loss 𝐿 between true 𝑦 and the estimated ො𝑦

• For every weight 𝑤 from hidden layer to the output layer
• Update the weight
• For every hidden node
• Assess how much blame it deserves for the current answer
• For every weight 𝑤 from input layer to the hidden layer
• Update the weight

29

Vanishing gradient

• During backprop, we compute gradients of the loss wrt weights
• If the net is deep, the gradient is computed via the chain rule
• If the derivative of the activation function is < 1, multiplying many such

derivatives will make the final product exponentially smaller!
→hence the name vanishing!
For example, sigmoid ranges between 0 to 1, and its derivative is very small, so it’s
very bad!
Tanh is a little better,
ReLU derivative is either 0 or 1, so better than both sigmoid and tanh

As the gradient approaches 1, weights in earlier layer barely get updated!

Examples of using neural network
for NLP tasks

Talk to your neighbors:

What can you use neural networks for?

Use cases for feedforward networks

• Classification:
• Sentiment analysis
• Spam detection
• Word / token classification, PoS tagging

• Language modeling
• Next word prediction, predicting sequence of words

Multiclass classification with neural network

Emotion classification

• Input: text messages
• Desired output: emotion

• 7 classes: anger, disgust, fear, joy, neutrality, sadness, surprise

• Supervised training: we have the ground truth labels, and split data into
train/val/test

What would a neural network look like if we have 2 hidden layers?
(input has 5 features), discuss with your neighbor

Input layer Hidden layer 1 Hidden layer 2 Output layer

P(anger)

P(surprise)

P(neutrality)

Number of
features = 5

softmax

P(joy)

P(disgust)

P(sadness)

P(fear)

7 classes

Why Neural LMs work better than N-gram LMs

• Training data:
• We've seen: I have to make sure that the cat gets fed.
• Never seen: dog gets fed
• Test data:
• I forgot to make sure that the dog gets ___
• N-gram LM can't predict "fed"!
• Neural LM can use similarity of "cat" and "dog" embeddings to

generalize and predict “fed” after dog

But we still need to handle OOV. Although no smoothing for NN.
Also NN takes longer to train!

More about neural networks

• We will learn about recurrent neural networks and transformers in
future lectures

• And we will talk more about their applications then!

Other textbooks specific to machine learning
and deep learning

But we focus more on the
applications on language-
related tasks in this class!

	Slide 1: Intro to Neural Networks
	Slide 2: Logistics
	Slide 3: Transition from linear to non-linear models
	Slide 4: Transition from linear to non-linear models
	Slide 5: Feedforward neural networks
	Slide 6
	Slide 7: History and background of NNs
	Slide 8: XOR gate
	Slide 9: What’s feedforward neural network?
	Slide 10: Feedforward neural network (FFNN)
	Slide 11: Where to get input features for FFNN?
	Slide 12: The anatomy of a neural network
	Slide 13: The architecture of a neural network
	Slide 14: Non-linear activation function
	Slide 15: The sigmoid function
	Slide 16: The tanh function
	Slide 17: The ReLU function
	Slide 18: where do we apply these activation functions and why do we need them?
	Slide 19: Stacking linear functions without non-linear activation functions
	Slide 20: Replacing the bias term with a dummy node Before
	Slide 21
	Slide 22: Replacing the bias term with a dummy node After
	Slide 23: Equations for NN classification with hand features
	Slide 24: Two-Layer Network with softmax output
	Slide 25: n input features, m neuron’s in this layer
	Slide 26: Training neural nets
	Slide 27: Backpropagation
	Slide 28: Intuition: training a 2-layer Network
	Slide 29: Intuition: Training a 2-layer network
	Slide 30: Vanishing gradient
	Slide 31: Examples of using neural network for NLP tasks
	Slide 32: Talk to your neighbors: What can you use neural networks for?
	Slide 33: Use cases for feedforward networks
	Slide 34: Multiclass classification with neural network
	Slide 35
	Slide 36: Why Neural LMs work better than N-gram LMs
	Slide 37: More about neural networks
	Slide 38: Other textbooks specific to machine learning and deep learning

