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Logistics 

• Coding assignment 2 due tonight.
• Coding assignment 1 grade will be released tonight.

• Today: the architecture of transformers and self-attention
• Next lecture: more in-depth discussion about different kinds of 

transformer models and masked language models



More on the class project 
Eventually in your final report, there will be these components at least:
• Problem statement, 
• Prior /related work
• Data
• Models
• Experiment
• Analysis
• Conclusion 

Make sure you pinpoint the exact problem in your problem statement

So your project needs to be sensible and have depth:
• Sensible/reasonable: could be finished before December, not a full-on research project. 
• Interesting: it could be an open research project (e.g. poetry generation) that’s difficult to evaluate; or, 

if you work on a very traditional, well-researched area, you need to provide some insight: comparing 
different approach, testing your own novel method, come up with new models or efficient 
implementation, or better evaluation that you come up with

• In short, you should have new insight from working on this project, that other people don’t have.

You are welcome to ask 
instructors or TAs about 

your project idea, but 
best think through these 

before asking! 



Introduction 

• Some of you already raised concerns in the last lecture about the 
“efficiency” of RNN: 
• vanishing gradient problem, memory, parallelizability.

• And we discussed these drawbacks of RNN, and said that’s why we 
keep inventing new LMs!
• Parallelizability especially at scale 

• Sure, it’s not completely unparallelizable, but due to its sequential nature
• Vanishing gradient: problematic for long-term dependency

• Today: a much better LM → transformer!
• Mainly about autoregressive LMs, more will unfold over the next few lectures, 

e.g. masked language models and bidirectional transformers.



Components of a transformer

• 3 components:
• Input encoding components
• Transformer blocks (each consists of multi-head attention layer, FFNN, 

layer normalization steps)
• Language modeling heads



 Figure from the original transformer paper Attention Is All You Need

Figure from the original transformer 
paper Attention Is All You Need

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1706.03762


Attention 



Examples

The keys to the cabinet are on the table

I walked along the pond, and noticed one 
of the tress along the bank

Which word sense of 
bank?

Generating from left to right, use are 
instead of is to refer to keys. (grammar)

Imagine if we use 
“they” to refer to a 

group of people after a 
whole paragraph 

describing a party.

Recall lecture on linguistics 
where we talked about 

ambiguity, dependencies, 
polysemy. But also long-term 

dependency from RNN lecture.



Many lecture ago

When talking about embeddings, we mentioned those were static 
embeddings, and that we would talk about contextual 
embeddings

The chicken didn’t cross the road because it …

The chicken didn’t cross the road because it was too tired

The chicken didn’t cross the road because it was too wide

Autoregressive generation (left to right)



Attention from last lecture

In the RNN lecture, we introduced attention 



Solution: Attention!

• Instead of being taken from the last hidden state, the context it’s a 
weighted average of all the hidden states of the encoder. 

• This weighted average is also informed by the state of the decoder 
right before the current token i. 

“weighted average” 
meaning, 𝑐𝑖 can attend to a 
particular part of the input 
text that is relevant to token 
I, which is what the decoder 
is trying to produce



Attention

8.8 • ATTENTION 23

In theattention mechanism, asin thevanillaencoder-decoder model, thecontext

vector c is asingle vector that is a function of the hidden states of the encoder. But

instead of being taken from the last hidden state, it’s a weighted average of all the

hidden states of the decoder. And this weighted average is also informed by part of

the decoder state as well, the state of the decoder right before the current token i.

That is, c = f (he1 . . .h
e
n,h

d
i−1). Theweights focuson (‘attend to’) aparticular part of

thesourcetext that isrelevant for thetoken i that thedecoder iscurrently producing.

Attention thusreplaces thestatic context vector with onethat isdynamically derived

from the encoder hidden states, but also informed by and hence different for each

token in decoding.

This context vector, ci , is generated anew with each decoding step i and takes

all of the encoder hidden states into account in its derivation. We then make this

context available during decoding by conditioning the computation of the current

decoder hidden stateon it (along with theprior hidden stateand thepreviousoutput

generated by thedecoder), aswesee in thisequation (and Fig. 8.21):

hdi = g(ŷi−1,h
d
i− 1,ci) (8.34)
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Figure8.21 The attention mechanism allows each hidden state of the decoder to see a

different, dynamic, context, which isafunction of all theencoder hidden states.

Thefirst step in computing ci is to computehow much to focuson each encoder

state, how relevant each encoder state is to the decoder state captured in hdi−1. We

capturerelevanceby computing— at each state i duringdecoding—ascore(hdi− 1,h
e
j )

for each encoder state j.

Thesimplest such score, called dot-product attention, implements relevanceasdot-product
attention

similarity: measuring how similar the decoder hidden state is to an encoder hidden

state, by computing thedot product between them:

score(hdi−1,h
e
j) = hdi− 1 · hej (8.35)

The score that results from this dot product is a scalar that reflects the degree of

similarity between thetwo vectors. Thevector of thesescoresacrossall theencoder

hidden states gives us the relevance of each encoder state to the current step of the

decoder.

To make use of these scores, we’ ll normalize them with a softmax to create a

vector of weights, a i j , that tellsustheproportional relevanceof each encoder hidden

state j to theprior hidden decoder state, hdi−1.

a i j = softmax(score(hdi− 1,h
e
j ))

=
exp(score(hdi−1,h

e
j)

P
kexp(score(hdi− 1,h

e
k))

(8.36)

Finally, given thedistribution ina , wecan computeafixed-length context vector for

the current decoder state by taking a weighted average over all the encoder hidden
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How to compute 𝑐𝑖  ? How to decide what to 
pay attention to? 
• One way is similarity! 

• Using similarity as a scoring function between last decoder state and each 
encoder hidden state

• Simplest such score is dot-product attention.
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How to compute 𝑐𝑖  ? How to decide what 

• We’ll normalize these similarity scores of each encoder hidden 
states with a softmax to create weights αi j , that tell us the 
relevance of encoder hidden state j to hidden decoder state,  hd

i-1

• And then use this to help create a weighted average of all the 
encoder hidden states:
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Encoder-decoder with attention, focusing on the 
computation of c

Using dot product to compute the 
similarity between an encoder hidden 
state and prior decoder hidden state



Now, enter



“The dominant sequence transduction models are based on 
complex recurrent or convolutional neural networks that include an 
encoder and a decoder. The best performing models also connect 
the encoder and decoder through an attention mechanism. 

We propose a new simple network architecture, the Transformer, 
based solely on attention mechanisms, dispensing with recurrence 
and convolutions entirely. Experiments on two machine translation 
tasks show these models to be superior in quality while being more 
parallelizable and requiring significantly less time to train.”

At the very beginning of the paper abstract: Exactly what we talked 
about in the last lecture



Attention head
Recall the simple intuition of attention: begin by computing the 
similarity between current word and all previous words using their 
dot product. The similarity will weight the importance of that 
previous word to the current word.

The chicken didn’t cross the road because  it

10.1 • THE TRANSFORMER: A SELF-ATTENTION NETWORK 5
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Figure10.2 Information flow in a causal (or masked) self-attention model. In processing

each element of the sequence, the model attends to all the inputs up to, and including, the

current one. Unlike RNNs, the computations at each time step are independent of all the

other stepsand thereforecan beperformed in parallel.

10.1.3 Self-attention moreformally

We’vegiven theintuition of self-attention (asaway to computerepresentations of a

word at a given layer by integrating information from words at the previous layer)

andwe’vedefined context as all the prior words in the input. Let’s now introduce

theself-attention computation itself.

The core intuition of attention is the idea of comparing an item of interest to a

collection of other items in away that reveals their relevance in thecurrent context.

In thecaseof self-attention for language, theset of comparisons are to other words

(or tokens) within agiven sequence. Theresult of thesecomparisons isthen used to

computean output sequence for thecurrent input sequence. For example, returning

to Fig. 10.2, the computation of a3 is based on a set of comparisons between the

input x3 and itspreceding elementsx1 and x2, and to x3 itself.

How shall we compare words to other words? Since our representations for

words are vectors, we’ ll make use of our old friend the dot product that we used

for computing word similarity in Chapter 6, and also played a role in attention in

Chapter 9. Let’s refer to the result of this comparison between words i and j as a

score (we’ ll be updating this equation to add attention to the computation of this

score):

Verson1: score(xi,x j) = xi ·x j (10.4)

The result of a dot product is a scalar value ranging from − • to • , the larger

thevaluethemoresimilar thevectorsthat arebeing compared. Continuing with our

example, the first step in computing y3 would be to compute three scores: x3 ·x1,

x3 ·x2 and x3 ·x3. Then to makeeffectiveuseof thesescores, we’ ll normalize them

with a softmax to create a vector of weights, ai j , that indicates the proportional

relevanceof each input to theinput element i that is thecurrent focusof attention.

ai j = softmax(score(xi,x j)) 8j i (10.5)

=
exp(score(xi,x j))

P i
k=1exp(score(xi,xk))

8j i (10.6)

Of course, thesoftmax weight will likely behighest for thecurrent focuselement

i, since vecxi is very similar to itself, resulting in a high dot product. But other

context wordsmay alsobesimilar to i, and thesoftmax will alsoassign someweight

to thosewords.

Given theproportional scores ina , wegenerate an output valueai by summing
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𝑥𝑖

Compute similarity with each previous word:

𝛼𝑖𝑗  is the similarity between current word and a 
previous word at position j, it will become the 
weight that signifies its 
importance/relatedness → how much should 
we attend to this

Weight sum



Attention head

• In transformer, we have a slightly more complicated version of this
• Attention head

• “Head” in transformers: refer to specific structured layers

• A single attention head use query, key, value matrices.
• 3 different roles each vector 𝑥𝑖  can play

• Intuitively: current word 𝑥𝑖  (query), and key and value of preceding word 𝑥𝑗  
• Query: current element 
• Key: a preceding input that’s being compared to (for similarity)
• Value: value of a preceding element (that gets weighted and summed), 

the actual information, semantic contribution



Intuition of attention: 

x1  x2  x3  x4  x5  x6  x7  xi
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Single-head attention

• A single attention head uses these three matrices:
• Query 𝑊𝑄

• Key 𝑊𝐾

• Value 𝑊𝑉

We'll use matrices to project each vector xi into a representation of its 
role as query, key, value:



An Actual Attention Head: slightly more complicated

• Given these 3 representation of xi

• To compute  similarity of current element xi with some prior element xj

• We’ll use dot product between  qi and kj. 

• And instead of summing up xj ,  we'll sum up vj



Final equations for one attention head



Actual Attention: slightly more complicated
• Instead of one attention head, we'll have lots of them!

• Intuition: each head might be attending to the context for different purposes
• Different linguistic relationships or patterns in the context



Multi-head attention



Summary

• Attention is a method for enriching the representation of a token 
by incorporating contextual information

• The result: the embedding for each word will be different in 
different contexts!

• Contextual embeddings: a representation of word meaning in its 
context.



Transformer blocks
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In a transformer block

• In addition to the self-attention layer, there are 3 other layers: 
feedforward layer, residual connections, and a normalizing layer 
(aka. Layer norm)

• And we can stack these transformer blocks, but each block is 
consists of these things.

• One way of thinking about the block is called the residual stream 
(Elhage et al, 2021).



The residual stream

• Each individual token has their own stream for processing
• A single stream starts with the original input vector, then branch 

out to different components (layer norm, MHA, feedforward), but 
we add their output back into the stream

• Initial embedding of a token 𝒙𝒊 at position 𝑖 
is of dimensionality d.

• The final output of the transformer block 
(end of this stream) for token 𝑖 is 𝒉𝒊

Figure from https://www.ausableriver.org/blog/why-do-streams-meander 

https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander


The residual stream: each token gets passed 
up and modified

There are many variations of 
transformers. Here’s we are 
using the pre-norm version 
which is the most common 

today, instead of the OG 
transformer which is post-

norm 



Minor clarification: Pre-norm vs post-norm

• Just different variations
• Post-norm: input → MHA → Residual Add → layer norm

• OG transformer in their paper (Vaswani et al, 2017)
• Takes raw hidden states of token, no layer norm yet

• Pre-norm: input → layer norm → MHA → residual add
• GPT 2/3, some BERT, etc.
• Take the layer normalized hidden states of tokens



The feedforward layer in residual stream/ a 
transformer block
• It’s a fully-connected 2-layer network

• 1 hidden layer
• 2 weight matrices

j

𝑥𝑖

U

W

xnx1 +1

b



We'll need nonlinearities, so a feedforward layer



Layer norm: the vector xi is normalized twice



Layer Norm
Layer norm is a variation of the z-score from statistics, applied to a single vec- 
tor in a hidden layer 

One of many form of 
normalization that can help 
improve training performance 
in deep neural network.

Input and output of layer norm 
are both of dimensionality  d

Standard 
deviation

mean



Putting together a single transformer block

MHA is the only 
component that 
takes input from 
other tokens



A transformer is a stack of these blocks
so all the vectors are of the same dimensionality d

Block 1

Block 2



Residual streams and attention

• Notice that all  parts of the transformer block apply to 1 same token.

• Except multi-head attention component, which takes information from other 
tokens as well. (because we need context!)

•  Elhage et al. (2021) show that we can view attention heads as literally moving 
information from the residual stream of a neighboring token into the current 
stream .



LLMs and transformer blocks

• In large language models, there are usually stacks of these 
transformer blocks
• From 12 layers: T5, GPT-3-small
• To 96 layers: GPT-3-large
• Even more in recent models

• Once we stack many transformer blocks, at the very end of the 
last transformer block, there’s a single extra layer norm after the 
last 𝒉𝒊 (output of that block)



Parallelizing attention



Parallelizing attention

• The computation of a  token’s 𝒂𝒊 is independent of the 
computation of other token’s

• So are all the computations in a transformer block
• That means we can easily parallelize this entire computation and 

take advantage of the efficient matrix multiplication routines.



Input embeddings for N tokens

• Each row is a token embedding of d dimensions.
• We have N tokens
• So a matrix X with N tokens is of size [N x d] (row x col)

• So a matrix with 32k tokens (in other words, input length 32k) is of 
size [32k x d]



Each weight matrices 

• 𝑊𝑄  → model learn how to ask questions
• 𝑊𝐾  → model  learn how to match relevant information
• 𝑊𝑉  → model learn what content to pass on once we matched the 

keys

• These are trainable matrices. Without them we are just attending 
to token based on their raw embedding similarity

• You can project the X to lower-dimension space 𝑑𝑘  which is 
cheaper



Let’s start with a single attention head

• We have input matrix X, and we multiply X by query, key, and value 
matrices



QKT

• Now can do a single matrix multiplication to combine Q and KT



Parallelizing attention

• Scale the  scores, take the softmax, and then 
multiply the result by V resulting in a matrix of 
shape N × d
• An attention vector for each input token



Masking out the future

• What is this mask function?
QKT has a score for each query dot every key, 
including those that follow the query.

• Guessing the next word is pretty simple if you 
already know it! 



Masking out the future

•  set –∞ to cells in upper triangle

• The softmax will turn it to 0



Another point: Attention is quadratic in length

dot products 
between each pair
of tokens in the 
input.



Single-head attention with N inputs



Parallelizing Multi-head Attention
Each attention head performs attention independently,  and 
we concatenate them at the end, and multiply by 𝑊𝑜

Attention heads can be parallelized, 
but not the stacked blocks, these 

are sequential.



Parallelizing Multi-head Attention

• or



Input embeddings



Token and Position Embeddings

• The matrix X (of shape [N × d]) has an embedding for 
each word in the context. 

• This embedding is created by adding two distinct 
embedding for each input

• token embedding

• positional embedding



Position Embeddings
• There are many methods, but we'll just describe the simplest: absolute 

position.

• Goal: learn a position embedding matrix Epos of shape [1 × N ]. 

• Start with randomly initialized embeddings

• one for each integer up to some maximum length. 

• i.e., just as we have an embedding for token fish, we’ll have an 
embedding for position 3 and position 17.

• As with word embeddings, these position embeddings are learned 
along with other parameters during training. 



Each x is just the sum of word and position 
embeddings

X = Composite

Embeddings

(word + position)

Transformer Block
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Pointers 

• We will continue this in the next lecture.

• If you haven’t read it in your deep learning class, the original paper 
is worth reading! Though it is not a required reading for this class. 

• Once again, the textbook is wonderful if you want to slowly go over 
any concepts with more details
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