
Transformers
CS 6120 Natural Language Processing

Northeastern University
Si Wu

Some slides borrowed from Jurafsky & Martin Chapter 8

Logistics

• Coding assignment 2 due tonight.
• Coding assignment 1 grade will be released tonight.

• Today: the architecture of transformers and self-attention
• Next lecture: more in-depth discussion about different kinds of

transformer models and masked language models

More on the class project
Eventually in your final report, there will be these components at least:
• Problem statement,
• Prior /related work
• Data
• Models
• Experiment
• Analysis
• Conclusion

Make sure you pinpoint the exact problem in your problem statement

So your project needs to be sensible and have depth:
• Sensible/reasonable: could be finished before December, not a full-on research project.
• Interesting: it could be an open research project (e.g. poetry generation) that’s difficult to evaluate; or,

if you work on a very traditional, well-researched area, you need to provide some insight: comparing
different approach, testing your own novel method, come up with new models or efficient
implementation, or better evaluation that you come up with

• In short, you should have new insight from working on this project, that other people don’t have.

You are welcome to ask
instructors or TAs about

your project idea, but
best think through these

before asking!

Introduction

• Some of you already raised concerns in the last lecture about the
“efficiency” of RNN:
• vanishing gradient problem, memory, parallelizability.

• And we discussed these drawbacks of RNN, and said that’s why we
keep inventing new LMs!
• Parallelizability especially at scale

• Sure, it’s not completely unparallelizable, but due to its sequential nature
• Vanishing gradient: problematic for long-term dependency

• Today: a much better LM → transformer!
• Mainly about autoregressive LMs, more will unfold over the next few lectures,

e.g. masked language models and bidirectional transformers.

Components of a transformer

• 3 components:
• Input encoding components
• Transformer blocks (each consists of multi-head attention layer, FFNN,

layer normalization steps)
• Language modeling heads

 Figure from the original transformer paper Attention Is All You Need

Figure from the original transformer
paper Attention Is All You Need

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1706.03762

Attention

Examples

The keys to the cabinet are on the table

I walked along the pond, and noticed one
of the tress along the bank

Which word sense of
bank?

Generating from left to right, use are
instead of is to refer to keys. (grammar)

Imagine if we use
“they” to refer to a

group of people after a
whole paragraph

describing a party.

Recall lecture on linguistics
where we talked about

ambiguity, dependencies,
polysemy. But also long-term

dependency from RNN lecture.

Many lecture ago

When talking about embeddings, we mentioned those were static
embeddings, and that we would talk about contextual
embeddings

The chicken didn’t cross the road because it …

The chicken didn’t cross the road because it was too tired

The chicken didn’t cross the road because it was too wide

Autoregressive generation (left to right)

Attention from last lecture

In the RNN lecture, we introduced attention

Solution: Attention!

• Instead of being taken from the last hidden state, the context it’s a
weighted average of all the hidden states of the encoder.

• This weighted average is also informed by the state of the decoder
right before the current token i.

“weighted average”
meaning, 𝑐𝑖 can attend to a
particular part of the input
text that is relevant to token
I, which is what the decoder
is trying to produce

Attention

8.8 • ATTENTION 23

In theattention mechanism, asin thevanillaencoder-decoder model, thecontext

vector c is asingle vector that is a function of the hidden states of the encoder. But

instead of being taken from the last hidden state, it’s a weighted average of all the

hidden states of the decoder. And this weighted average is also informed by part of

the decoder state as well, the state of the decoder right before the current token i.

That is, c = f (he1 . . .h
e
n,h

d
i−1). Theweights focuson (‘attend to’) aparticular part of

thesourcetext that isrelevant for thetoken i that thedecoder iscurrently producing.

Attention thusreplaces thestatic context vector with onethat isdynamically derived

from the encoder hidden states, but also informed by and hence different for each

token in decoding.

This context vector, ci , is generated anew with each decoding step i and takes

all of the encoder hidden states into account in its derivation. We then make this

context available during decoding by conditioning the computation of the current

decoder hidden stateon it (along with theprior hidden stateand thepreviousoutput

generated by thedecoder), aswesee in thisequation (and Fig. 8.21):

hdi = g(ŷi−1,h
d
i− 1,ci) (8.34)

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

Figure8.21 The attention mechanism allows each hidden state of the decoder to see a

different, dynamic, context, which isafunction of all theencoder hidden states.

Thefirst step in computing ci is to computehow much to focuson each encoder

state, how relevant each encoder state is to the decoder state captured in hdi−1. We

capturerelevanceby computing— at each state i duringdecoding—ascore(hdi− 1,h
e
j)

for each encoder state j.

Thesimplest such score, called dot-product attention, implements relevanceasdot-product
attention

similarity: measuring how similar the decoder hidden state is to an encoder hidden

state, by computing thedot product between them:

score(hdi−1,h
e
j) = hdi− 1 · hej (8.35)

The score that results from this dot product is a scalar that reflects the degree of

similarity between thetwo vectors. Thevector of thesescoresacrossall theencoder

hidden states gives us the relevance of each encoder state to the current step of the

decoder.

To make use of these scores, we’ ll normalize them with a softmax to create a

vector of weights, a i j , that tellsustheproportional relevanceof each encoder hidden

state j to theprior hidden decoder state, hdi−1.

a i j = softmax(score(hdi− 1,h
e
j))

=
exp(score(hdi−1,h

e
j)

P
kexp(score(hdi− 1,h

e
k))

(8.36)

Finally, given thedistribution ina , wecan computeafixed-length context vector for

the current decoder state by taking a weighted average over all the encoder hidden

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

How to compute 𝑐𝑖 ? How to decide what to
pay attention to?
• One way is similarity!

• Using similarity as a scoring function between last decoder state and each
encoder hidden state

• Simplest such score is dot-product attention.

8.8 • ATTENTION 23

In theattention mechanism, asin thevanillaencoder-decoder model, thecontext

vector c is asingle vector that is a function of the hidden states of the encoder. But

instead of being taken from the last hidden state, it’s a weighted average of all the

hidden states of the decoder. And this weighted average is also informed by part of

the decoder state as well, the state of the decoder right before the current token i.

That is, c = f (he1 . . .h
e
n,h

d
i−1). Theweights focuson (‘attend to’) aparticular part of

thesourcetext that isrelevant for thetoken i that thedecoder iscurrently producing.

Attention thusreplaces thestatic context vector with onethat isdynamically derived

from the encoder hidden states, but also informed by and hence different for each

token in decoding.

This context vector, ci, is generated anew with each decoding step i and takes

all of the encoder hidden states into account in its derivation. We then make this

context available during decoding by conditioning the computation of the current

decoder hidden stateon it (along with theprior hidden state and thepreviousoutput

generated by thedecoder), aswesee in thisequation (and Fig. 8.21):

hdi = g(ŷi−1,h
d
i−1,ci) (8.34)

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

Figure8.21 The attention mechanism allows each hidden state of the decoder to see a

different, dynamic, context, which isafunction of all theencoder hidden states.

Thefirst step in computing ci is to computehow much to focuson each encoder

state, how relevant each encoder state is to the decoder state captured in hdi− 1. We

capturerelevanceby computing— at each state i duringdecoding—ascore(hdi−1,h
e
j)

for each encoder state j.

Thesimplest such score, called dot-product attention, implements relevanceasdot-product
attention

similarity: measuring how similar the decoder hidden state is to an encoder hidden

state, by computing thedot product between them:

score(hdi− 1,h
e
j) = hdi−1 · hej (8.35)

The score that results from this dot product is a scalar that reflects the degree of

similarity between thetwo vectors. Thevector of thesescoresacrossall theencoder

hidden states gives us the relevance of each encoder state to the current step of the

decoder.

To make use of these scores, we’ ll normalize them with a softmax to create a

vector of weights, a i j , that tellsustheproportional relevanceof each encoder hidden

state j to theprior hidden decoder state, hdi− 1.

a i j = softmax(score(hdi−1,h
e
j))

=
exp(score(hdi− 1,h

e
j)

P
kexp(score(hdi− 1,h

e
k))

(8.36)

Finally, given thedistribution ina , wecan computeafixed-length context vector for

the current decoder state by taking a weighted average over all the encoder hidden

For each encoder
state j

How to compute 𝑐𝑖 ? How to decide what

• We’ll normalize these similarity scores of each encoder hidden
states with a softmax to create weights αi j , that tell us the
relevance of encoder hidden state j to hidden decoder state, hd

i-1

• And then use this to help create a weighted average of all the
encoder hidden states:

8.8 • ATTENTION 23

In theattention mechanism, asin thevanillaencoder-decoder model, thecontext

vector c is asingle vector that is a function of the hidden states of the encoder. But

instead of being taken from the last hidden state, it’s a weighted average of all the

hidden states of the decoder. And this weighted average is also informed by part of

the decoder state as well, the state of the decoder right before the current token i.

That is, c = f (he1 . . .h
e
n,h

d
i− 1). Theweights focuson (‘attend to’) aparticular part of

thesourcetext that isrelevant for thetoken i that thedecoder iscurrently producing.

Attention thusreplaces thestatic context vector with onethat isdynamically derived

from the encoder hidden states, but also informed by and hence different for each

token in decoding.

This context vector, ci, is generated anew with each decoding step i and takes

all of the encoder hidden states into account in its derivation. We then make this

context available during decoding by conditioning the computation of the current

decoder hidden stateon it (along with theprior hidden state and thepreviousoutput

generated by thedecoder), aswesee in thisequation (and Fig. 8.21):

hdi = g(ŷi− 1,h
d
i−1,ci) (8.34)

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

Figure8.21 The attention mechanism allows each hidden state of the decoder to see a

different, dynamic, context, which isafunction of all theencoder hidden states.

Thefirst step in computing ci is to computehow much to focuson each encoder

state, how relevant each encoder state is to the decoder state captured in hdi−1. We

capturerelevanceby computing— at each state i duringdecoding—ascore(hdi− 1,h
e
j)

for each encoder state j.

Thesimplest such score, called dot-product attention, implements relevanceasdot-product
attention

similarity: measuring how similar the decoder hidden state is to an encoder hidden

state, by computing thedot product between them:

score(hdi−1,h
e
j) = hdi− 1 · hej (8.35)

The score that results from this dot product is a scalar that reflects the degree of

similarity between thetwo vectors. Thevector of thesescoresacrossall theencoder

hidden states gives us the relevance of each encoder state to the current step of the

decoder.

To make use of these scores, we’ ll normalize them with a softmax to create a

vector of weights, a i j , that tellsustheproportional relevanceof each encoder hidden

state j to theprior hidden decoder state, hdi−1.

a i j = softmax(score(hdi− 1,h
e
j))

=
exp(score(hdi−1,h

e
j)

P
kexp(score(hdi−1,h

e
k))

(8.36)

Finally, given thedistribution ina , wecan computeafixed-length context vector for

the current decoder state by taking a weighted average over all the encoder hidden

Encoder-decoder with attention, focusing on the
computation of c

Using dot product to compute the
similarity between an encoder hidden
state and prior decoder hidden state

Now, enter

“The dominant sequence transduction models are based on
complex recurrent or convolutional neural networks that include an
encoder and a decoder. The best performing models also connect
the encoder and decoder through an attention mechanism.

We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence
and convolutions entirely. Experiments on two machine translation
tasks show these models to be superior in quality while being more
parallelizable and requiring significantly less time to train.”

At the very beginning of the paper abstract: Exactly what we talked
about in the last lecture

Attention head
Recall the simple intuition of attention: begin by computing the
similarity between current word and all previous words using their
dot product. The similarity will weight the importance of that
previous word to the current word.

The chicken didn’t cross the road because it

10.1 • THE TRANSFORMER: A SELF-ATTENTION NETWORK 5

Self-Attention
Layer

x1

a1

x2

a2 a3 a4 a5

x3 x4 x5

Figure10.2 Information flow in a causal (or masked) self-attention model. In processing

each element of the sequence, the model attends to all the inputs up to, and including, the

current one. Unlike RNNs, the computations at each time step are independent of all the

other stepsand thereforecan beperformed in parallel.

10.1.3 Self-attention moreformally

We’vegiven theintuition of self-attention (asaway to computerepresentations of a

word at a given layer by integrating information from words at the previous layer)

andwe’vedefined context as all the prior words in the input. Let’s now introduce

theself-attention computation itself.

The core intuition of attention is the idea of comparing an item of interest to a

collection of other items in away that reveals their relevance in thecurrent context.

In thecaseof self-attention for language, theset of comparisons are to other words

(or tokens) within agiven sequence. Theresult of thesecomparisons isthen used to

computean output sequence for thecurrent input sequence. For example, returning

to Fig. 10.2, the computation of a3 is based on a set of comparisons between the

input x3 and itspreceding elementsx1 and x2, and to x3 itself.

How shall we compare words to other words? Since our representations for

words are vectors, we’ ll make use of our old friend the dot product that we used

for computing word similarity in Chapter 6, and also played a role in attention in

Chapter 9. Let’s refer to the result of this comparison between words i and j as a

score (we’ ll be updating this equation to add attention to the computation of this

score):

Verson1: score(xi,x j) = xi ·x j (10.4)

The result of a dot product is a scalar value ranging from − • to • , the larger

thevaluethemoresimilar thevectorsthat arebeing compared. Continuing with our

example, the first step in computing y3 would be to compute three scores: x3 ·x1,

x3 ·x2 and x3 ·x3. Then to makeeffectiveuseof thesescores, we’ ll normalize them

with a softmax to create a vector of weights, ai j , that indicates the proportional

relevanceof each input to theinput element i that is thecurrent focusof attention.

ai j = softmax(score(xi,x j)) 8j i (10.5)

=
exp(score(xi,x j))

P i
k=1exp(score(xi,xk))

8j i (10.6)

Of course, thesoftmax weight will likely behighest for thecurrent focuselement

i, since vecxi is very similar to itself, resulting in a high dot product. But other

context wordsmay alsobesimilar to i, and thesoftmax will alsoassign someweight

to thosewords.

Given theproportional scores ina , wegenerate an output valueai by summing

10.1 • THE TRANSFORMER: A SELF-ATTENTION NETWORK 5

Self-Attention
Layer

x1

a1

x2

a2 a3 a4 a5

x3 x4 x5

Figure10.2 Information flow in a causal (or masked) self-attention model. In processing

each element of the sequence, the model attends to all the inputs up to, and including, the

current one. Unlike RNNs, the computations at each time step are independent of all the

other stepsand thereforecan beperformed in parallel.

10.1.3 Self-attention moreformally

We’vegiven the intuition of self-attention (asaway to compute representations of a

word at a given layer by integrating information from words at the previous layer)

and we’vedefined context as all the prior words in the input. Let’s now introduce

theself-attention computation itself.

The core intuition of attention is the idea of comparing an item of interest to a

collection of other items in away that reveals their relevance in thecurrent context.

In the case of self-attention for language, theset of comparisons are to other words

(or tokens) within agiven sequence. Theresult of thesecomparisons is then used to

compute an output sequence for thecurrent input sequence. For example, returning

to Fig. 10.2, the computation of a3 is based on a set of comparisons between the

input x3 and itspreceding elements x1 and x2, and to x3 itself.

How shall we compare words to other words? Since our representations for

words are vectors, we’ ll make use of our old friend the dot product that we used

for computing word similarity in Chapter 6, and also played a role in attention in

Chapter 9. Let’s refer to the result of this comparison between words i and j as a

score (we’ ll be updating this equation to add attention to the computation of this

score):

Verson 1: score(xi,x j) = xi ·x j (10.4)

The result of a dot product is a scalar value ranging from − • to • , the larger

thevaluethemoresimilar thevectors that arebeing compared. Continuing with our

example, the first step in computing y3 would be to compute three scores: x3 ·x1,

x3 ·x2 and x3 ·x3. Then to makeeffectiveuseof thesescores, we’ ll normalize them

with a softmax to create a vector of weights, ai j , that indicates the proportional

relevanceof each input to the input element i that is thecurrent focusof attention.

ai j = softmax(score(xi,x j)) 8j i (10.5)

=
exp(score(xi,x j))

P i
k= 1exp(score(xi,xk))

8j i (10.6)

Of course, thesoftmax weight will likely behighest for thecurrent focuselement

i, since vecxi is very similar to itself, resulting in a high dot product. But other

context wordsmay also besimilar to i, and thesoftmax will also assign someweight

to thosewords.

Given theproportional scores in a , wegenerate an output valueai by summing

𝑥𝑖

Compute similarity with each previous word:

𝛼𝑖𝑗 is the similarity between current word and a
previous word at position j, it will become the
weight that signifies its
importance/relatedness → how much should
we attend to this

Weight sum

Attention head

• In transformer, we have a slightly more complicated version of this
• Attention head

• “Head” in transformers: refer to specific structured layers

• A single attention head use query, key, value matrices.
• 3 different roles each vector 𝑥𝑖 can play

• Intuitively: current word 𝑥𝑖 (query), and key and value of preceding word 𝑥𝑗
• Query: current element
• Key: a preceding input that’s being compared to (for similarity)
• Value: value of a preceding element (that gets weighted and summed),

the actual information, semantic contribution

Intuition of attention:

x1 x2 x3 x4 x5 x6 x7 xi

query

values
k
v

k
v

k
v

k
v

k
v

k
v

k
v

keys k
v

Single-head attention

• A single attention head uses these three matrices:
• Query 𝑊𝑄

• Key 𝑊𝐾

• Value 𝑊𝑉

We'll use matrices to project each vector xi into a representation of its
role as query, key, value:

An Actual Attention Head: slightly more complicated

• Given these 3 representation of xi

• To compute similarity of current element xi with some prior element xj

• We’ll use dot product between qi and kj.

• And instead of summing up xj , we'll sum up vj

Final equations for one attention head

Actual Attention: slightly more complicated
• Instead of one attention head, we'll have lots of them!

• Intuition: each head might be attending to the context for different purposes
• Different linguistic relationships or patterns in the context

Multi-head attention

Summary

• Attention is a method for enriching the representation of a token
by incorporating contextual information

• The result: the embedding for each word will be different in
different contexts!

• Contextual embeddings: a representation of word meaning in its
context.

Transformer blocks

Stacked

Transformer

Blocks

So long and thanks for

long and thanks forNext token all

…

…

…

U

Input tokens

x1 x2

Language

Modeling

Head

x3 x4 x5

Input
Encoding E

1+

E

2+

E

3+

E

4+

E

5+

…

… ………

U U U U

…

logits logits logits logits logits

Transformer language model

In a transformer block

• In addition to the self-attention layer, there are 3 other layers:
feedforward layer, residual connections, and a normalizing layer
(aka. Layer norm)

• And we can stack these transformer blocks, but each block is
consists of these things.

• One way of thinking about the block is called the residual stream
(Elhage et al, 2021).

The residual stream

• Each individual token has their own stream for processing
• A single stream starts with the original input vector, then branch

out to different components (layer norm, MHA, feedforward), but
we add their output back into the stream

• Initial embedding of a token 𝒙𝒊 at position 𝑖
is of dimensionality d.

• The final output of the transformer block
(end of this stream) for token 𝑖 is 𝒉𝒊

Figure from https://www.ausableriver.org/blog/why-do-streams-meander

https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander

The residual stream: each token gets passed
up and modified

There are many variations of
transformers. Here’s we are
using the pre-norm version
which is the most common

today, instead of the OG
transformer which is post-

norm

Minor clarification: Pre-norm vs post-norm

• Just different variations
• Post-norm: input → MHA → Residual Add → layer norm

• OG transformer in their paper (Vaswani et al, 2017)
• Takes raw hidden states of token, no layer norm yet

• Pre-norm: input → layer norm → MHA → residual add
• GPT 2/3, some BERT, etc.
• Take the layer normalized hidden states of tokens

The feedforward layer in residual stream/ a
transformer block
• It’s a fully-connected 2-layer network

• 1 hidden layer
• 2 weight matrices

j

𝑥𝑖

U

W

xnx1 +1

b

We'll need nonlinearities, so a feedforward layer

Layer norm: the vector xi is normalized twice

Layer Norm
Layer norm is a variation of the z-score from statistics, applied to a single vec-
tor in a hidden layer

One of many form of
normalization that can help
improve training performance
in deep neural network.

Input and output of layer norm
are both of dimensionality d

Standard
deviation

mean

Putting together a single transformer block

MHA is the only
component that
takes input from
other tokens

A transformer is a stack of these blocks
so all the vectors are of the same dimensionality d

Block 1

Block 2

Residual streams and attention

• Notice that all parts of the transformer block apply to 1 same token.

• Except multi-head attention component, which takes information from other
tokens as well. (because we need context!)

• Elhage et al. (2021) show that we can view attention heads as literally moving
information from the residual stream of a neighboring token into the current
stream .

LLMs and transformer blocks

• In large language models, there are usually stacks of these
transformer blocks
• From 12 layers: T5, GPT-3-small
• To 96 layers: GPT-3-large
• Even more in recent models

• Once we stack many transformer blocks, at the very end of the
last transformer block, there’s a single extra layer norm after the
last 𝒉𝒊 (output of that block)

Parallelizing attention

Parallelizing attention

• The computation of a token’s 𝒂𝒊 is independent of the
computation of other token’s

• So are all the computations in a transformer block
• That means we can easily parallelize this entire computation and

take advantage of the efficient matrix multiplication routines.

Input embeddings for N tokens

• Each row is a token embedding of d dimensions.
• We have N tokens
• So a matrix X with N tokens is of size [N x d] (row x col)

• So a matrix with 32k tokens (in other words, input length 32k) is of
size [32k x d]

Each weight matrices

• 𝑊𝑄 → model learn how to ask questions
• 𝑊𝐾 → model learn how to match relevant information
• 𝑊𝑉 → model learn what content to pass on once we matched the

keys

• These are trainable matrices. Without them we are just attending
to token based on their raw embedding similarity

• You can project the X to lower-dimension space 𝑑𝑘 which is
cheaper

Let’s start with a single attention head

• We have input matrix X, and we multiply X by query, key, and value
matrices

QKT

• Now can do a single matrix multiplication to combine Q and KT

Parallelizing attention

• Scale the scores, take the softmax, and then
multiply the result by V resulting in a matrix of
shape N × d
• An attention vector for each input token

Masking out the future

• What is this mask function?
QKT has a score for each query dot every key,
including those that follow the query.

• Guessing the next word is pretty simple if you
already know it!

Masking out the future

• set –∞ to cells in upper triangle

• The softmax will turn it to 0

Another point: Attention is quadratic in length

dot products
between each pair
of tokens in the
input.

Single-head attention with N inputs

Parallelizing Multi-head Attention
Each attention head performs attention independently, and
we concatenate them at the end, and multiply by 𝑊𝑜

Attention heads can be parallelized,
but not the stacked blocks, these

are sequential.

Parallelizing Multi-head Attention

• or

Input embeddings

Token and Position Embeddings

• The matrix X (of shape [N × d]) has an embedding for
each word in the context.

• This embedding is created by adding two distinct
embedding for each input

• token embedding

• positional embedding

Position Embeddings
• There are many methods, but we'll just describe the simplest: absolute

position.

• Goal: learn a position embedding matrix Epos of shape [1 × N].

• Start with randomly initialized embeddings

• one for each integer up to some maximum length.

• i.e., just as we have an embedding for token fish, we’ll have an
embedding for position 3 and position 17.

• As with word embeddings, these position embeddings are learned
along with other parameters during training.

Each x is just the sum of word and position
embeddings

X = Composite

Embeddings

(word + position)

Transformer Block

J
a
n

e
t

1

w
ill

2

b
a
c
k

3

Janet will back the bill

th
e

4

b
ill

5

+ + + + +

Position

Embeddings

Word

Embeddings

Pointers

• We will continue this in the next lecture.

• If you haven’t read it in your deep learning class, the original paper
is worth reading! Though it is not a required reading for this class.

• Once again, the textbook is wonderful if you want to slowly go over
any concepts with more details

	Slide 1: Transformers
	Slide 2: Logistics
	Slide 3: More on the class project
	Slide 4: Introduction
	Slide 5: Components of a transformer
	Slide 6
	Slide 7: Attention
	Slide 8
	Slide 9: Many lecture ago
	Slide 10: Attention from last lecture
	Slide 11: Solution: Attention!
	Slide 12: Attention
	Slide 13: How to compute c sub i. ? How to decide what to pay attention to?
	Slide 14: How to compute c sub i. ? How to decide what
	Slide 15: Encoder-decoder with attention, focusing on the computation of c
	Slide 16: Now, enter
	Slide 17
	Slide 18: Attention head
	Slide 19: Attention head
	Slide 20: Intuition of attention:
	Slide 21: Single-head attention
	Slide 22: An Actual Attention Head: slightly more complicated
	Slide 23: Final equations for one attention head
	Slide 24: Actual Attention: slightly more complicated
	Slide 25: Multi-head attention
	Slide 26: Summary
	Slide 27: Transformer blocks
	Slide 28: Transformer language model
	Slide 29: In a transformer block
	Slide 30: The residual stream
	Slide 31: The residual stream: each token gets passed up and modified
	Slide 32: Minor clarification: Pre-norm vs post-norm
	Slide 33: The feedforward layer in residual stream/ a transformer block
	Slide 34: We'll need nonlinearities, so a feedforward layer
	Slide 35: Layer norm: the vector xi is normalized twice
	Slide 36: Layer Norm
	Slide 37: Putting together a single transformer block
	Slide 38: A transformer is a stack of these blocks so all the vectors are of the same dimensionality d
	Slide 39: Residual streams and attention
	Slide 40: LLMs and transformer blocks
	Slide 41: Parallelizing attention
	Slide 42: Parallelizing attention
	Slide 43: Input embeddings for N tokens
	Slide 44: Each weight matrices
	Slide 45: Let’s start with a single attention head
	Slide 46: QKT
	Slide 47: Parallelizing attention
	Slide 48: Masking out the future
	Slide 49: Masking out the future
	Slide 50: Another point: Attention is quadratic in length
	Slide 51: Single-head attention with N inputs
	Slide 52: Parallelizing Multi-head Attention
	Slide 53: Parallelizing Multi-head Attention
	Slide 54: Input embeddings
	Slide 55: Token and Position Embeddings
	Slide 56: Position Embeddings
	Slide 57: Each x is just the sum of word and position embeddings
	Slide 58: Pointers

