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Logistics

* Coding assignment 2 due tonight.
* Coding assignment 1 grade will be released tonight.

* Today: the architecture of transformers and self-attention

* Next lecture: more in-depth discussion about different kinds of
transformer models and masked language models



More on the class project

Eventually in your final report, there will be these components at least:

Problem statement,

Prior /related work You are welcome to ask

Data instructors or TAs about

Models your project idea, but

Experiment bestthinkthrough these
: before asking!

Analysis

Conclusion

Make sure you pinpoint the exact problem in your problem statement

So your project needs to be sensible and have depth:

Sensible/reasonable: could be finished before December, not a full-on research project.

InterestinE: it could be an open research project (e.g. poetry generation) that’s difficult to evaluate; or,
if you work on avery traditional, well-researched area, you need to provide some insight: comparing
different approach, testing your own novel method, come up with new models or efficient
implementation, or better evaluation that you come up with

In short, you should have new insight from working on this project, that other people don’t have.



Introduction

* Some of you already raised concerns in the last lecture about the
“efficiency” of RNN:

* vanishing gradient problem, memory, parallelizability.

* And we discussed these drawbacks of RNN, and said that’s why we
keep inventing new LMs!

* Parallelizability especially at scale
e Sure, it’s not completely unparallelizable, but due to its sequential nature

* Vanishing gradient: problematic for long-term dependency

» Today: a much better LM = transformer!

* Mainly about autoregressive LMs, more will unfold over the next few lectures,
e.g. masked language models and bidirectional transformers.



Components of a transformer

* 3 components:
* Input encoding components

* Transformer blocks (each consists of multi-head attention layer, FFNN,
layer normalization steps)

* Language modeling heads
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https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1706.03762

Attention



Exa M p l.eS Generating from left to right, use are

instead of is to refer to keys. (grammar)

K—\ Imagine if we use
“they” to referto a

group of people after a

The keys to the cabinet are on the table whole paragraph

describing a party.

| walked along the pond, and noticed one
of the tress along the bank

Which word sense of

R L lecture on linguistics
ecall lectu inguisti bank?

where we talked about
ambiguity, dependencies,
polysemy. But also long-term
dependency from RNN lecture.



Many lecture ago

When talking about embeddings, we mentioned those were static
embeddings, and that we would talk about contextual
embeddings

Autoregressive generation (left to right)

The chicken didn’t cross the road because if ...

The chicken didn’t cross the road because it was too tired

The chicken didn’t cross the road because it was too wide



Attention from last lecture

In the RNN lecture, we introduced attention



Solution: Attention!

* Instead of being taken from the last hidden state, the context it’s a
weighted average of all the hidden states of the encoder.

* This weighted average is also informed by the state of the decoder
right before the current token . N

Cl — f(hfi C he @ “weighted average”

meaning, ¢; can attend to a
particular part of the input
text that is relevant to token
|, which is what the decoder
IS trying to produce




Attention




How to compute ¢; ? How to decide what to
pay attention to?

* One way is similarity!

* Using similarity as a scoring function between last decoder state and each
encoder hidden state

e Simplest such score is dot-product attention.

For each encoder SCOFG(h,-d_1,he-) = h;j_1 - he
state j J /



How to compute ¢; ? How to decide what

 We'll normalize these similarity scores of each encoder hidden
states with a softmax to create weights a; ;, that tell us the
relevance of encoder hidden state j to hidden decoder state, hd. ,

ajj = softmax (score(h?. i,h7))

* And then use this to help create a weighted average of all the
encoder hidden states:
= D ai;h
J



Encoder-decoder with attention, focusing on the
computation of c

Using dot product to compute the
similarity between an encoder hidden Decoder
state and prior decoder hidden state

attention
weights
a/ij

hidden
layer(s)




Now, enter
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At the very beginning of the paper abstract: Exactly what we talked
about in the last lecture

“The dominant sequence transduction models are based on

-

-

complex recurrent or convolutional neural networks that include an
encoder and a decoder. The best performing models also connect
the encoder and decoder through an attention mechanism.

~

We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence
and convolutions entirely. Experiments on two machine translation
tasks show these models to be superior in quality while being more
parallelizable and requiring significantly less time to train.”



Attention head

Recall the simple intuition of attention: begin by computing the
similarity between current word and all previous words using their
dot product. The similarity will weight the importance of that
previous word to the current word.

The chicken didn’t cross the road because| it

Compute similarity with each previous word: SCOf'e(Xi, Xj) = XX

a;j is the similarity between current word and a ajj = softmax(score(x,-, Xj)) 8/ <]
previous word at position j, it will become the

weight that signifies its -
importance/relatedness = how much should A = E : ;X Weight sum
we attend to this J<i



Attention head

* In transformer, we have a slightly more complicated version of this

* Attention head
 “Head” intransformers: refer to specific structured layers

* A single attention head use query, key, value matrices.

* 3 different roles each vector x; can play
* Intuitively: current word x; (query), and key and value of preceding word x;

* Query: current element
* Key: a preceding input that’s being compared to (for similarity)

* Value: value of a preceding element (that gets weighted and summed),
the actual information, semantic contribution



Intuition of attention:
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Single-head attention

* A single attention head uses these three matrices:
e Query W¢
e Key WK
e Value W"

We'll use matrices to project each vector x; into a representation of its
role as query, key, value:

9 =xW?Y ki =x;WK; v, =x,WY



An Actual Attention Head: slightly more complicated

* Given these 3 representation of x.
: K. V
g =x;WY k, =xWK: v,=xW
* To compute similarity of current element x; with some prior element x;

* We'll use dot product between q; and k.

* And instead of summing up x;, we'll sum upv;



Final equations for one attention head

Qi:xiWQ; kj = XjWK; ijijV
q;-k;
Vi

o;; = softmax(score(x;,x;)) Vj<i

head;, = Zaij\,j

score(X;,X;j) =

|
=
®
)
-
=
o

a;



Actual Attention: slightly more complicated

 |nstead of one attention head, we'll have lots of them!

* [ntuition: each head might be attending to the context for different purposes
* Different linguistic relationships or patterns in the context

qf:xiWQc; k?zijKc; v? = ijVC; Ve 1<c<h

q - S
Vi

score” (X;,X;) =

c

o;; = softmax(score®(x;,x;)) Vj<i
head; = Z(xfjv;

J<i
a, = (head' @ head’... s head")W?
MultiHeadAttention(x;, X1, ,Xy]) = a;




Multi-head attention

a;

[T xd]

—— [1x th]

Concatenate Outputs

Each head
attends differently
to context

e °
- =




Summary

* Attention is a method for enriching the representation of a token
by incorporating contextual information

* The result: the embedding for each word will be different in
different contexts!

* Contextual embeddings: a representation of word meaning in its
context.



Transformer blocks



Transformer language model
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In a transformer block

* In addition to the self-attention layer, there are 3 other layers:
feedforward layer, residual connections, and a normalizing layer
(aka. Layer norm)

* And we can stack these transformer blocks, but each block is
consists of these things.

* One way of thinking about the block is called the residual stream
(Elhage et al, 2021).



The residual stream

* Each individual token has their own stream for processing

* A single stream starts with the original input vector, then branch
out to different components (layer norm, MHA, feedforward), but
we add their output back into the stream

* Initial embedding of a token x; at position i

. . . . .y . -
is of dimensionality d. o g,

_ migrates down the

* The final output of the transformer block
(end of this stream) for token i is h;

Figure from https://www.ausableriver.org/blog/why-do-streams-meander



https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
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https://www.ausableriver.org/blog/why-do-streams-meander
https://www.ausableriver.org/blog/why-do-streams-meander
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The residual stream: each token gets passed
up and modified
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Minor clarification: Pre-norm vs post-norm

e Just different variations

e Post-norm: input 2> MHA - Residual Add = layer norm

* OG transformer in their paper (Vaswani et al, 2017)
* Takes raw hidden states of token, no layer norm yet

* Pre-norm: input = layer norm - MHA - residual add

 GPT 2/3, some BERT, etc. i1 K sy
* Take the layer normalized hidden states of tokens &

e ..
ol 1 A
i Ldaycl INUTTIT ) I 4




The feedforward layer in residual stream/ a
transformer block

* |t’s a fully-connected 2-layer network
* 1 hidden layer
* 2 weight matrices




We'll need nonlinearities, so a feedforward layer
FFN(x;) = ReLU(x;W| +b; )W, + b,
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Layer norm: the vector x; Is normalized twice
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Layer Norm

Layer norm is a variation of the z-score from statistics, applied to a single vec-
tor in a hidden layer

d
|
H = g 2%
i—1 One of many form of
normalization that can help
d improve training performance
1 ) in deep neural network.
c = |5 ) xi—u)
\4:
=1
mean Input and output of layer norm
are both of dimensionality d
. (x—u Y
X = Standard

O «—  deviation

LayerNorm(x) =y -




Putting together a single transformer block

hi-1 hi fiv1
1 — .
4 t; = LayerNorm(x;)
t> = MultiHeadAttention(t;
| Feedforward | ! l
' 3 2
yer Norm | ti — ti _|_ X
1 4 3 MHA is the only
>\- ti T LayerNorm(ti ) component that
n 5 4 takes input from
—"—_—"’—':}@yerlNor‘r‘H:}:::~.._‘ ti _ FfN(l;l ) other tokens
] hi — ti —|— ti

Xi-1 X Xi+1



A transformer is a stack of these blocks
so all the vectors are of the same dimensionality d

Block 2

Block 1




Residual streams and attention

* Notice that all parts of the transformer block apply to 1 same token.

e Except multi-head attention component, which takes information from other
tokens as well. (because we need context!)

* Elhage et al. (2021) show that we can view attention heads as literally moving
information from the residual stream of a neighboring token into the current

stream .

Token A Token B
residual residual
stream stream




LLMs and transformer blocks

* In large language models, there are usually stacks of these
transformer blocks
* From 12 layers: T5, GPT-3-small
* To 96 layers: GPT-3-large
* Even more in recent models

* Once we stack many transformer blocks, at the very end of the
last transformer block, there’s a single extra layer norm after the
last h; (output of that block)



Parallelizing attention



Parallelizing attention

* The computation of a token’s a; is independent of the
computation of other token’s

* So are all the computations in a transformer block

* That means we can easily parallelize this entire computation and
take advantage of the efficient matrix multiplication routines.



Input embeddings for N tokens

* Each row is a token embedding of d dimensions.

* We have N tokens
* So a matrix X with N tokens is of size [N x d] (row x col)

* S0 a matrix with 32k tokens (in other words, input length 32k) is of
size [32k x d]



Each weight matrices

* WY - model learn how to ask questions
e WX > model learn how to match relevant information

« WY = model learn what content to pass on once we matched the
keys

* These are trainable matrices. Without them we are just attending
to token based on their raw embedding similarity

* You can project the X to lower-dimension space d; which is
cheaper



Let’s start with a single attention head

* We have input matrix X, and we multiply X by query, key, and value
matrices

Q = XW?: K =XWK: v =xwV



QK'

* Now can do a single matrix multiplication to combine Q and K’

ql-k1

ql-k2

ql-k3

ql-k4

q2-k1

q2-k2

q2:-k3

q2:-k4

q3-k1

q3-k2

q3-k3

q3-k4

q4-k1

q4-k2

q4-k3

q4-k4




Parallelizing attention

e Scale the scores, take the softmax, and then
multiply the result by V resulting in a matrix of
shape N x d

* An attention vector for each input token

-
A = softmax (mask ((\)/'C(Tk )) V




Masking out the future

.
A = softmax (mask ((\)/[c;k )) V

* What is this mask function?
QK" has a score for each query dot every key,
including those that follow the query.

e Guessing the next word is pretty simple if you
already know it!



Masking out the future
A softmax (mask (

QKT
Vi

* set —oo to cells in upper triangle

e The softmax will turnitto O

)"

ql-k1

q2-k1

q2-k2

q3-k1

q3-k2

q3-k3

q4-k1

q4-k2

q4-k3




Another point: Attention is quadratic in length

A

dot products
between each pair
of tokens in the
input.

QKT
softmax [ mask V
Vdj
qlik1| —o0 | —00 [ —00
q2:k1 (q2°k2| —c0 | —o0
q3:k1|g3-k2|g3-k3| —o0
q4-k1|q4-k2(g4-k3 |q4-k4




Single-head
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Parallelizing Multi-head Attention

Each attention head performs attention independently, and
we concatenate them at the end, and multiply by W°

Qi _ XWQ' : Ki _ XWKi : Vi _ Xin

L KITN
head; = SelfAttention(Q',K',V') = softmax (Q ) \"A
vy

MultiHeadAttention(X) = (head; & head,... & head;,)W°

Attention heads can be parallelized,
but not the stacked blocks, these
are sequential.



Parallelizing Multi-head Attention

O = LayerNorm(X + MultiHeadAttention(X))
LayerNorm(O + FFN(QO))

I
|

* or
T! = MultiHeadAttention(X)

T = X+ T!

T° = LayerNorm(T?)
T* = FFEN(T?)

T5 — T4, 73

H = LayerNorm(T>)



Input embeddings



Token and Position Embeddings

* The matrix X (of shape [N x d]) has an embedding for
each word in the context.

* This embedding is created by adding two distinct
embedding for each input

* token embedding
* positional embedding



Position Embeddings

* There are many methods, but we'll just describe the simplest: absolute
position.

* Goal: learn a position embedding matrix Epos of shape [1 x N ].
 Start with randomly initialized embeddings
e one for each integer up to some maximum length.

* j.e., just as we have an embedding for token fish, we’ll have an
embedding for position 3 and position 17.

* As with word embeddings, these position embeddings are learned
along with other parameters during training.



Each x is just the sum of word and position
embeddings

Transformer Block

)
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Pointers

e We will continue this in the next lecture.

* If you haven’t read it in your deep learning class, the original paper
Is worth reading! Though it is not a required reading for this class.

* Once again, the textbook is wonderful if you want to slowly go over
any concepts with more details
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