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Logistics 

• The first coding assignment is due this Friday midnight
• Try to submit on Gradescope as soon as possible if you are not familiar 

with Gradescope
• If you need help, reach out to TAs and ask on Ed Discussion

• Today is the last day to drop a class without a W
• I’ve posted links to materials for reviewing machine learning 

basics on Ed Discussion.

• Today: word embedding and its applications
• You probably already learned the math from vector calculus, but we will 

focus more on the fun applications and think more deeply about language



Feature vector using word count

• Last time we talked about if the vector length is |V|  where V is the 
set of vocabulary, the vector will be too sparse since most of the 
entries will be 0

• Today we will introduce simple word embeddings that are dense
and perform better at many NLP tasks



What’s a word embedding?

• In this lecture, we are talking about the static word embeddings
• The vector representation of word that are learned directly from the 

distribution of text
• “Apple is a company” and “I just ate an apple”, the word apple will have 

the same embedding (if these two sentences are in the same training 
data).
• Word order and sense don’t matter, even if the word has multiple meanings

• In the future, once we learn about neural networks and and other 
advanced LMs, we will introduce contextualized embeddings for 
words and sentences

Polysemy: having multiple 
meanings or word senses



Similarity in NLP

• “This album is awesome”
• “This album is phenomenal” 
• “This album is the GOAT”
• “This album is sick”

All these sentences express the same sentiment towards an album 
but just are said in different ways



Similarity in NLP

• What can be similar between two words?
• The environment / context they are in

• Travel: flight, delay, ticket, airport, suitcase, carry-on, luggage 
• The meaning (synonymy)

• Happy, joyful, cheerful (the definition of same meaning is loose here)
• The connotation/sentiment

• See the meme on this page
• The emotion

• Horror: horrifying, terrifying, horrific, scary 
• The language id:

• French: bonjour, merci, salut, bonsoir, oui,
• The topic

• Sports: Celtics, Lakers, Basketball, Boston, Los Angeles
• The time period of usage: 

• Old English: thou, thee, ye, thy, wilt 
• Etc., you can come up with one for your project!

But also similarity between 
sentences:

paraphrase of the same language,
paraphrase of different languages, 

aka. translations!



Student 

university

college

laptop
classroom

study

etudiant (French) 

学生 (Chinese)
pupil

professor



Student 

university

college

laptop
classroom

study

professor

Words that are related/associated with “student”

Word association task



Student 

etudiant (French) 

学生 (Chinese)
pupil

Words that are similar/synonyms to “student”



Dot product review

Dot product of 2 vectors
• Coordinate definition 

Dot product can also be expressed in terms of the angle between 
the two vector

• Geometric definition 

a 

b

𝜃



Cosine similarity

Cosine similarity = 
Range:
-1 to 1

Angle 𝜃
• 𝜃 = 0, cos 𝜃 = 1, maximum similarity
• 𝜃 = 90, cos 𝜃 = 0, unrelated
• 𝜃 = 180, cos 𝜃 = −1, opposite direction

Cosine similarity is just the normalized dot 
product



Cosine similarity vs dot product 

Raw dot product:

Because the dot product between a and b is the sum of the 
products of their component in each dimension, the dot product 
value is high when the vectors have large values in the same 
dimensions



Cosine similarity vs dot product 

Raw dot product:

However, this is problematic because frequent words like “the” and 
“of” have longer vector, and dot product overly favors them 

This is why most of the time in NLP we will use cosine similarity of 
two vectors instead of raw dot product.



Now, instead of vector a, let’s 
think about a word embedding



Word association and context

• One of the many NLP tasks that uses “similarity” 
• Here, we think about the topic and the environment/surroundings 

that a word belongs to
• Some words are often seen together, sharing the same 

surroundings 
• They are in the same “neighborhood”
• We want to find these closely related words

• But first, we need to embed them into a 
vector space, before we can find these
clusters 



Getting the embeddings

• We decide the size of the dimension that we will be computing on
• Using the distributional information of a text corpus, we map 

these words onto the vector space, then we can discover patterns 
based on their relative distances to each other 

• So how to get these word embeddings?
• There are many methods, word2vec (Mikolov et al.), GloVe (Pennington et 

al.)
• We will talk about word2vec in this lecture 



Word2vec and skip-gram



Intuition: Consider these examples

“I want to add some ____ to my coffee”

These words are not similar but related to coffee

“___ is sweet”

These words are (almost) similar in meaning

sugar, milk, cream

sugar, candy, lollipop 



Skip-gram with negative sampling (SGNS)

• Word2vec method has many options (different objective 
functions), 
• one of them is skip-gram with negative sampling (SGNS)

• Intuition: the natural co-occurrence of words can be turned into 
data that we train on
• if they do co-occur within a window length → positive example
• Randomly select other words as negative example
• No need to label any data.
• This is called self-supervision: using the data itself to generate labels/ 

supervisory signals



Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word c as positive 
examples.

2. Randomly sample other words in the lexicon to get negative examples
3. Use logistic regression to train a classifier to distinguish those two 

cases
4. Use the learned weights as the embeddings



Training sentence:

... lemon, a [ tablespoon of apricot jam or ] pinch ...

             c1     c2   w     c3   c4

Assume a +/- 2 word window

Goal: train a classifier that is given a candidate (word, context) pair
   + positive example: (apricot, jam)
   - negative example: (apricot, mitochondria)
  …
And assigns each pair a probability:
 P(+|w, c) 
 P(−|w, c) = 1 − P(+|w, c) 



Training sentence:

... lemon, a [ tablespoon of apricot jam or ] pinch ...

             c1     c2   w     c3   c4

The intuition is that: 
 if a word’s embedding will be nearby another word’s embedding if these 

two words are similar

• Mathematically, if two embeddings are nearby, their dot product will be high

• Since cosine similarity is a normalized dot product

• We assume that their cosine similarity will be high as well.



Turning dot products into probabilities
• w is the target word vector, c is one of target word’s context word’s vector
• Cosine similarity(w,c) ∝ w ∙ c

To turn this into a probability 
• We'll use the sigmoid from logistic regression:



How Skip-Gram Classifier computes P(+|w, c) 

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

Log for easier math

product → sum



Skip-gram classifier: summary
A probabilistic classifier, given 

• a test target word w 
• its context window of L words c1:L

Estimates probability that w occurs in this window based on similarity of w 
(embeddings) to c1:L (embeddings).

To compute this, we just need embeddings for all the words.



Skip-Gram Training data

26

... lemon, a [ tablespoon of apricot jam or ] pinch ...

             c1     c2   w     c3   c4



Word2vec: how to learn vectors

•Given the set of positive and negative training 
instances, and an initial set of embedding vectors 
• The goal of learning is to adjust those word vectors 

such that we:
• Maximize the similarity of the target word, context word pairs (w , cpos) drawn 

from the positive data

• Minimize the similarity of the (w , cneg) pairs drawn from the negative data. 



Loss function for one w with cpos , cneg1 ...cnegk 
Maximize the probability/similarity of the target with the actual context words. 
Maximize the probability of neg samples being non-neighbors → Minimize the 
similarity of the target with the k negative sampled non-neighbor words. 

Multiply because we 
assume independence 



Learning the classifier

• How to learn?
• Stochastic gradient descent!

• We’ll adjust the word weights to
• make the positive pairs more likely 
• and the negative pairs less likely, 
• over the entire training set.



Reminder: gradient descent

• At each step
• Direction: We move in the reverse direction from the gradient of the loss 

function to minimize loss

• Magnitude: we move the value of this gradient 𝑑

𝑑𝑤
𝐿(𝑓 𝑥; 𝑤 , 𝑦) weighted 

by a learning rate η 
• Higher learning rate means move w faster
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example):

wt+1 = wt − h
d

dw
L( f (x;w),y) (5.14)

Now let’sextend the intuition from a function of onescalar variablew to many

variables, becausewedon’ t just want to move left or right, wewant to know where

in theN-dimensional space (of theN parameters that makeup q) weshould move.

The gradient is just such a vector; it expresses the directional components of the

sharpest slopealong each of thoseN dimensions. If we’rejust imagining twoweight

dimensions(say for oneweightwandonebiasb), thegradient might beavector with

two orthogonal components, each of which tells ushow much theground slopes in

thew dimension and in theb dimension. Fig. 5.4 showsavisualization of thevalue

of a2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure5.4 Visualization of thegradient vector at the red point in two dimensionsw and b,

showing thegradient asared arrow in thex-y plane.

In an actual logistic regression, theparameter vector w ismuch longer than 1 or

2, since the input feature vector x can be quite long, and we need a weight wi for

each xi . For each dimension/variablewi inw (plus thebiasb), thegradient will have

a component that tells us the slope with respect to that variable. Essentially we’re

asking: “Howmuchwould asmall change in that variablewi influence the total loss

function L?”

In each dimensionwi , weexpress theslopeasapartial derivative
∂
∂wi

of the loss

function. Thegradient is then defined asavector of thesepartials. We’ ll represent ŷ

as f (x;q) tomakethedependenceon q moreobvious:

—qL( f (x;q),y)) =

2

6
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(5.15)

Thefinal equation for updating q based on thegradient is thus

qt+ 1 = qt − h—L( f (x;q),y) (5.16)



The derivatives of the loss function

To get gradient, we need to take the derivatives with respect to 
pos and neg



Update equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates
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Thefinal equation for updating q based on thegradient is thus

qt+ 1 = qt − h—L( f (x;q),y) (5.16)

Plug in the derivatives 



Two sets of embeddings

SGNS learns two sets of embeddings
  Target embeddings matrix W
  Context embedding matrix C 
It's common to just add them together, representing word i as the 
vector  wi + ci



Summary: How to learn word2vec (skip-gram) 
embeddings
Start with V random d-dimensional vectors as initial embeddings
Train a classifier based on embedding similarity
• Take a corpus and take pairs of words that co-occur as positive examples
• Take pairs of words that don't co-occur as negative examples
• Train the classifier to distinguish these by slowly adjusting all the embeddings 

to improve the classifier performance
• Throw away the classifier code and keep the embeddings.



The kinds of neighbors depend on window size

•Small windows (C= +/- 2) : nearest words are syntactically similar 
words in same taxonomy

•Hogwarts nearest neighbors are other fictional schools
•Sunnydale, Evernight, Blandings

•Large windows (C= +/- 5) :  nearest words are related words in same 
semantic field

•Hogwarts nearest neighbors are Harry Potter world:
•Dumbledore, half-blood,  Malfoy

Window size is a parameter we can tune on dev/val set, and it affects 
performance.



Analogy

A to B   (is like)/≈ X to what?
• E.g. woof to dog is like meow to ?

woof

dog 

meow

cat

stars

night sky 

freckles

face

Poetic example



Analogy

Rumelhart and Abrahamson (1973) proposed the parallelogram 
model 

• A paper from cognitive psychology
• Survey on lower-division psychology class students from UCSD

woof

dog 

meow

cat



Caveats with the parallelogram method

• It only seems to work for frequent words, small distances and 
certain relations (relating countries to capitals, or parts of 
speech), but not others. (Linzen 2016, Gladkova et al. 2016, 
Ethayarajh et al. 2019a) 

• Understanding analogy is an open area of research (Peterson et al. 
2020)



Embeddings reflect cultural bias!

• Ask “Paris : France :: Tokyo : x” 
• x = Japan

• Ask “father : doctor :: mother : x” 
• x = nurse

• Ask “man : computer programmer :: woman : x” 
• x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to 
computer programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 
4349-4357. 2016.

Algorithms that use embeddings as part of e.g., hiring searches for 
programmers, might lead to bias in hiring
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Tracking the history of the meaning/usage of a 
word

For example, these figures shows a visualization of changes in meaning in English words over 
the last two centuries, computed by building separate embedding spaces for each decade 
from historical corpora like Google N-grams and the Corpus of Historical American English.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical Laws of 
Semantic Change. Proceedings of ACL.

This is projected 
onto a 2D space 

using tSNE for 
visualization



Historical embedding as a tool to study cultural biases

• Compute a gender or ethnic bias for each adjective: e.g., how much closer 
the adjective is to "woman" synonyms than "man" synonyms, or names of 
particular ethnicities
• Embeddings for competence adjective (smart, wise, brilliant, 

resourceful, thoughtful, logical) are biased toward men, a bias slowly 
decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric, monstrous, bizarre)  
were biased toward Asians in the 1930s, bias decreasing over the 20 th 
century.
• These match the results of old surveys done in the 1930s, and the 

bias decreased in both text and surveys over the 20th century

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. 
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.
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