
Word Embeddings
CS 6120 Natural Language Processing

Si Wu

Some slides borrowed from Jurafsky & Martin Chapter 5

Logistics

• The first coding assignment is due this Friday midnight
• Try to submit on Gradescope as soon as possible if you are not familiar

with Gradescope
• If you need help, reach out to TAs and ask on Ed Discussion

• Today is the last day to drop a class without a W
• I’ve posted links to materials for reviewing machine learning

basics on Ed Discussion.

• Today: word embedding and its applications
• You probably already learned the math from vector calculus, but we will

focus more on the fun applications and think more deeply about language

Feature vector using word count

• Last time we talked about if the vector length is |V| where V is the
set of vocabulary, the vector will be too sparse since most of the
entries will be 0

• Today we will introduce simple word embeddings that are dense
and perform better at many NLP tasks

What’s a word embedding?

• In this lecture, we are talking about the static word embeddings
• The vector representation of word that are learned directly from the

distribution of text
• “Apple is a company” and “I just ate an apple”, the word apple will have

the same embedding (if these two sentences are in the same training
data).
• Word order and sense don’t matter, even if the word has multiple meanings

• In the future, once we learn about neural networks and and other
advanced LMs, we will introduce contextualized embeddings for
words and sentences

Polysemy: having multiple
meanings or word senses

Similarity in NLP

• “This album is awesome”
• “This album is phenomenal”
• “This album is the GOAT”
• “This album is sick”

All these sentences express the same sentiment towards an album
but just are said in different ways

Similarity in NLP

• What can be similar between two words?
• The environment / context they are in

• Travel: flight, delay, ticket, airport, suitcase, carry-on, luggage
• The meaning (synonymy)

• Happy, joyful, cheerful (the definition of same meaning is loose here)
• The connotation/sentiment

• See the meme on this page
• The emotion

• Horror: horrifying, terrifying, horrific, scary
• The language id:

• French: bonjour, merci, salut, bonsoir, oui,
• The topic

• Sports: Celtics, Lakers, Basketball, Boston, Los Angeles
• The time period of usage:

• Old English: thou, thee, ye, thy, wilt
• Etc., you can come up with one for your project!

But also similarity between
sentences:

paraphrase of the same language,
paraphrase of different languages,

aka. translations!

Student

university

college

laptop
classroom

study

etudiant (French)

学生 (Chinese)
pupil

professor

Student

university

college

laptop
classroom

study

professor

Words that are related/associated with “student”

Word association task

Student

etudiant (French)

学生 (Chinese)
pupil

Words that are similar/synonyms to “student”

Dot product review

Dot product of 2 vectors
• Coordinate definition

Dot product can also be expressed in terms of the angle between
the two vector

• Geometric definition

a

b

𝜃

Cosine similarity

Cosine similarity =
Range:
-1 to 1

Angle 𝜃
• 𝜃 = 0, cos 𝜃 = 1, maximum similarity
• 𝜃 = 90, cos 𝜃 = 0, unrelated
• 𝜃 = 180, cos 𝜃 = −1, opposite direction

Cosine similarity is just the normalized dot
product

Cosine similarity vs dot product

Raw dot product:

Because the dot product between a and b is the sum of the
products of their component in each dimension, the dot product
value is high when the vectors have large values in the same
dimensions

Cosine similarity vs dot product

Raw dot product:

However, this is problematic because frequent words like “the” and
“of” have longer vector, and dot product overly favors them

This is why most of the time in NLP we will use cosine similarity of
two vectors instead of raw dot product.

Now, instead of vector a, let’s
think about a word embedding

Word association and context

• One of the many NLP tasks that uses “similarity”
• Here, we think about the topic and the environment/surroundings

that a word belongs to
• Some words are often seen together, sharing the same

surroundings
• They are in the same “neighborhood”
• We want to find these closely related words

• But first, we need to embed them into a
vector space, before we can find these
clusters

Getting the embeddings

• We decide the size of the dimension that we will be computing on
• Using the distributional information of a text corpus, we map

these words onto the vector space, then we can discover patterns
based on their relative distances to each other

• So how to get these word embeddings?
• There are many methods, word2vec (Mikolov et al.), GloVe (Pennington et

al.)
• We will talk about word2vec in this lecture

Word2vec and skip-gram

Intuition: Consider these examples

“I want to add some ____ to my coffee”

These words are not similar but related to coffee

“___ is sweet”

These words are (almost) similar in meaning

sugar, milk, cream

sugar, candy, lollipop

Skip-gram with negative sampling (SGNS)

• Word2vec method has many options (different objective
functions),
• one of them is skip-gram with negative sampling (SGNS)

• Intuition: the natural co-occurrence of words can be turned into
data that we train on
• if they do co-occur within a window length → positive example
• Randomly select other words as negative example
• No need to label any data.
• This is called self-supervision: using the data itself to generate labels/

supervisory signals

Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word c as positive
examples.

2. Randomly sample other words in the lexicon to get negative examples
3. Use logistic regression to train a classifier to distinguish those two

cases
4. Use the learned weights as the embeddings

Training sentence:

... lemon, a [tablespoon of apricot jam or] pinch ...

 c1 c2 w c3 c4

Assume a +/- 2 word window

Goal: train a classifier that is given a candidate (word, context) pair
 + positive example: (apricot, jam)
 - negative example: (apricot, mitochondria)
 …
And assigns each pair a probability:
 P(+|w, c)
 P(−|w, c) = 1 − P(+|w, c)

Training sentence:

... lemon, a [tablespoon of apricot jam or] pinch ...

 c1 c2 w c3 c4

The intuition is that:
 if a word’s embedding will be nearby another word’s embedding if these

two words are similar

• Mathematically, if two embeddings are nearby, their dot product will be high

• Since cosine similarity is a normalized dot product

• We assume that their cosine similarity will be high as well.

Turning dot products into probabilities
• w is the target word vector, c is one of target word’s context word’s vector
• Cosine similarity(w,c) ∝ w ∙ c

To turn this into a probability
• We'll use the sigmoid from logistic regression:

How Skip-Gram Classifier computes P(+|w, c)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

Log for easier math

product → sum

Skip-gram classifier: summary
A probabilistic classifier, given

• a test target word w
• its context window of L words c1:L

Estimates probability that w occurs in this window based on similarity of w
(embeddings) to c1:L (embeddings).

To compute this, we just need embeddings for all the words.

Skip-Gram Training data

26

... lemon, a [tablespoon of apricot jam or] pinch ...

 c1 c2 w c3 c4

Word2vec: how to learn vectors

•Given the set of positive and negative training
instances, and an initial set of embedding vectors
• The goal of learning is to adjust those word vectors

such that we:
• Maximize the similarity of the target word, context word pairs (w , cpos) drawn

from the positive data

• Minimize the similarity of the (w , cneg) pairs drawn from the negative data.

Loss function for one w with cpos , cneg1 ...cnegk
Maximize the probability/similarity of the target with the actual context words.
Maximize the probability of neg samples being non-neighbors → Minimize the
similarity of the target with the k negative sampled non-neighbor words.

Multiply because we
assume independence

Learning the classifier

• How to learn?
• Stochastic gradient descent!

• We’ll adjust the word weights to
• make the positive pairs more likely
• and the negative pairs less likely,
• over the entire training set.

Reminder: gradient descent

• At each step
• Direction: We move in the reverse direction from the gradient of the loss

function to minimize loss

• Magnitude: we move the value of this gradient 𝑑

𝑑𝑤
𝐿(𝑓 𝑥; 𝑤 , 𝑦) weighted

by a learning rate η
• Higher learning rate means move w faster

10 CHAPTER 5 • LOGISTIC REGRESSION

example):

wt+1 = wt − h
d

dw
L(f (x;w),y) (5.14)

Now let’sextend the intuition from a function of onescalar variablew to many

variables, becausewedon’ t just want to move left or right, wewant to know where

in theN-dimensional space (of theN parameters that makeup q) weshould move.

The gradient is just such a vector; it expresses the directional components of the

sharpest slopealong each of thoseN dimensions. If we’rejust imagining twoweight

dimensions(say for oneweightwandonebiasb), thegradient might beavector with

two orthogonal components, each of which tells ushow much theground slopes in

thew dimension and in theb dimension. Fig. 5.4 showsavisualization of thevalue

of a2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure5.4 Visualization of thegradient vector at the red point in two dimensionsw and b,

showing thegradient asared arrow in thex-y plane.

In an actual logistic regression, theparameter vector w ismuch longer than 1 or

2, since the input feature vector x can be quite long, and we need a weight wi for

each xi . For each dimension/variablewi inw (plus thebiasb), thegradient will have

a component that tells us the slope with respect to that variable. Essentially we’re

asking: “Howmuchwould asmall change in that variablewi influence the total loss

function L?”

In each dimensionwi , weexpress theslopeasapartial derivative
∂
∂wi

of the loss

function. Thegradient is then defined asavector of thesepartials. We’ ll represent ŷ

as f (x;q) tomakethedependenceon q moreobvious:

—qL(f (x;q),y)) =

2

6
6
6
6
4

∂
∂w1
L(f (x;q),y)

∂
∂w2
L(f (x;q),y)

...
∂
∂wn
L(f (x;q),y)

3

7
7
7
7
5

(5.15)

Thefinal equation for updating q based on thegradient is thus

qt+ 1 = qt − h—L(f (x;q),y) (5.16)

The derivatives of the loss function

To get gradient, we need to take the derivatives with respect to
pos and neg

Update equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates

10 CHAPTER 5 • LOGISTIC REGRESSION

example):

wt+1 = wt − h
d

dw
L(f (x;w),y) (5.14)

Now let’sextend the intuition from a function of onescalar variablew to many

variables, becausewedon’ t just want to move left or right, wewant to know where

in theN-dimensional space (of theN parameters that makeup q) weshould move.

The gradient is just such a vector; it expresses the directional components of the

sharpest slopealong each of thoseN dimensions. If we’rejust imagining twoweight

dimensions(say for oneweightwandonebiasb), thegradient might beavector with

two orthogonal components, each of which tells ushow much theground slopes in

thew dimension and in theb dimension. Fig. 5.4 showsavisualization of thevalue

of a2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure5.4 Visualization of thegradient vector at the red point in two dimensionsw and b,

showing thegradient asared arrow in thex-y plane.

In an actual logistic regression, theparameter vector w ismuch longer than 1 or

2, since the input feature vector x can be quite long, and we need a weight wi for

each xi . For each dimension/variablewi inw (plus thebiasb), thegradient will have

a component that tells us the slope with respect to that variable. Essentially we’re

asking: “Howmuchwould asmall change in that variablewi influence the total loss

function L?”

In each dimensionwi , weexpress theslopeasapartial derivative
∂
∂wi

of the loss

function. Thegradient is then defined asavector of thesepartials. We’ ll represent ŷ

as f (x;q) tomakethedependenceon q moreobvious:

—qL(f (x;q),y)) =

2

6
6
6
6
4

∂
∂w1
L(f (x;q),y)

∂
∂w2
L(f (x;q),y)

...
∂
∂wn
L(f (x;q),y)

3

7
7
7
7
5

(5.15)

Thefinal equation for updating q based on thegradient is thus

qt+ 1 = qt − h—L(f (x;q),y) (5.16)

Plug in the derivatives

Two sets of embeddings

SGNS learns two sets of embeddings
 Target embeddings matrix W
 Context embedding matrix C
It's common to just add them together, representing word i as the
vector wi + ci

Summary: How to learn word2vec (skip-gram)
embeddings
Start with V random d-dimensional vectors as initial embeddings
Train a classifier based on embedding similarity
• Take a corpus and take pairs of words that co-occur as positive examples
• Take pairs of words that don't co-occur as negative examples
• Train the classifier to distinguish these by slowly adjusting all the embeddings

to improve the classifier performance
• Throw away the classifier code and keep the embeddings.

The kinds of neighbors depend on window size

•Small windows (C= +/- 2) : nearest words are syntactically similar
words in same taxonomy

•Hogwarts nearest neighbors are other fictional schools
•Sunnydale, Evernight, Blandings

•Large windows (C= +/- 5) : nearest words are related words in same
semantic field

•Hogwarts nearest neighbors are Harry Potter world:
•Dumbledore, half-blood, Malfoy

Window size is a parameter we can tune on dev/val set, and it affects
performance.

Analogy

A to B (is like)/≈ X to what?
• E.g. woof to dog is like meow to ?

woof

dog

meow

cat

stars

night sky

freckles

face

Poetic example

Analogy

Rumelhart and Abrahamson (1973) proposed the parallelogram
model

• A paper from cognitive psychology
• Survey on lower-division psychology class students from UCSD

woof

dog

meow

cat

Caveats with the parallelogram method

• It only seems to work for frequent words, small distances and
certain relations (relating countries to capitals, or parts of
speech), but not others. (Linzen 2016, Gladkova et al. 2016,
Ethayarajh et al. 2019a)

• Understanding analogy is an open area of research (Peterson et al.
2020)

Embeddings reflect cultural bias!

• Ask “Paris : France :: Tokyo : x”
• x = Japan

• Ask “father : doctor :: mother : x”
• x = nurse

• Ask “man : computer programmer :: woman : x”
• x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to
computer programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp.
4349-4357. 2016.

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to
computer programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp.
4349-4357. 2016.

https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to
computer programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp.
4349-4357. 2016.

https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520

Tracking the history of the meaning/usage of a
word

For example, these figures shows a visualization of changes in meaning in English words over
the last two centuries, computed by building separate embedding spaces for each decade
from historical corpora like Google N-grams and the Corpus of Historical American English.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical Laws of
Semantic Change. Proceedings of ACL.

This is projected
onto a 2D space

using tSNE for
visualization

Historical embedding as a tool to study cultural biases

• Compute a gender or ethnic bias for each adjective: e.g., how much closer
the adjective is to "woman" synonyms than "man" synonyms, or names of
particular ethnicities
• Embeddings for competence adjective (smart, wise, brilliant,

resourceful, thoughtful, logical) are biased toward men, a bias slowly
decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric, monstrous, bizarre)
were biased toward Asians in the 1930s, bias decreasing over the 20 th
century.
• These match the results of old surveys done in the 1930s, and the

bias decreased in both text and surveys over the 20th century

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.

	Slide 1: Word Embeddings
	Slide 2: Logistics
	Slide 3: Feature vector using word count
	Slide 4: What’s a word embedding?
	Slide 5: Similarity in NLP
	Slide 6: Similarity in NLP
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Dot product review
	Slide 11: Cosine similarity
	Slide 12: Cosine similarity vs dot product
	Slide 13: Cosine similarity vs dot product
	Slide 14: Now, instead of vector a, let’s think about a word embedding
	Slide 15: Word association and context
	Slide 16: Getting the embeddings
	Slide 17: Word2vec and skip-gram
	Slide 18: Intuition: Consider these examples
	Slide 19: Skip-gram with negative sampling (SGNS)
	Slide 20: Approach: predict if candidate word c is a "neighbor"
	Slide 21
	Slide 22
	Slide 23: Turning dot products into probabilities
	Slide 24: How Skip-Gram Classifier computes P(+|w, c)
	Slide 25: Skip-gram classifier: summary
	Slide 26: Skip-Gram Training data
	Slide 27: Word2vec: how to learn vectors
	Slide 28: Loss function for one w with cpos , cneg1 ...cnegk
	Slide 29: Learning the classifier
	Slide 30: Reminder: gradient descent
	Slide 31: The derivatives of the loss function
	Slide 32: Update equation in SGD
	Slide 33: Two sets of embeddings
	Slide 34: Summary: How to learn word2vec (skip-gram) embeddings
	Slide 35: The kinds of neighbors depend on window size
	Slide 36: Analogy
	Slide 37: Analogy
	Slide 38: Caveats with the parallelogram method
	Slide 39: Embeddings reflect cultural bias!
	Slide 40
	Slide 41
	Slide 42: Tracking the history of the meaning/usage of a word
	Slide 43: Historical embedding as a tool to study cultural biases

