Word Embeddings

CS 6120 Natural Language Processing

Si Wu

Some slides borrowed from Jurafsky & Martin Chapter 5

Logistics

* The first coding assignment is due this Friday midnight

* Try to submit on Gradescope as soon as possible if you are not familiar
with Gradescope

* |[f you need help, reach outto TAs and ask on Ed Discussion
* Today is the last day to drop a class withouta W

* I’ve posted links to materials for reviewing machine learning
basics on Ed Discussion.

* Today: word embedding and its applications

* You probably already learned the math from vector calculus, but we will
focus more on the fun applications and think more deeply about language

Feature vector using word count

* Last time we talked about if the vector length is |V| where V is the
set of vocabulary, the vector will be too sparse since most of the
entries will be O

* Today we will introduce simple word embeddings that are dense
and perform better at many NLP tasks

What’s a word embedding? eam e or word entes

* In this lecture, we are talking about the static word embeddings

* The vector representation of word that are learn irectly from the
distribution of text

 “Apple is acompany” and “l just ate an apple”, the word apple will have
the same embedding (if these two sentences are in the same training
data).

* Word order and sense don’t matter, even if the word has multiple meanings

* |[n the future, once we learn about neural networks and and other
advanced LMs, we will introduce contextualized embeddings for
words and sentences

Similarity in NLP

T

e “This album is awesome”

€«€KT

nis album is phenomenal”
* “This album is the GOAT”

€T

e “This album is sick”

All these sentences express the same sentiment towards an album
but just are said in different ways

But also similarity between

Similarity in NLP

paraphrase of the same language,
paraphrase of different languages,
* What can be similar between two words? aka. translations!
* The environment/ context they arein
* Travel: flight, delay, ticket, airport, suitcase, carry-on, luggage
The meaning (synonymy)
* Happy, joyful, cheerful (the definition of same meaningis loose here)
The connotation/sentiment
* See the meme on this page
The emotion
* Horror: horrifying, terrifying, horrific, scary
The language id:
* French: bonjour, merci, salut, bonsoir, oui,
The topic
* Sports: Celtics, Lakers, Basketball, Boston, Los Angeles
The time period of usage:
* Old English: thou, thee, ye, thy, wilt
Etc., you can come up with one for your project!

classroom

laptop university
study
college
etudiant (French)
Student
4 (Chinese)
pupil

professor

Words that are related/associated with “student”

classroom

laptop university

study

college

Word association task

Student

professor

Words that are similar/synonyms to “student”

etudiant (French)

Student

4 (Chinese) ’
pupl

Dot product review /

a=la;,as, - ,an] "
Dot product of 2 vectors b = [b1, by, -, by]

e Coordinate definition

a-b=Za2—b@- =ai1by +asby + -+ 4+ a,b,
1=1

Dot product can also be expressed in terms of the angle between
the two vector

e Geometric definition
a-b=|all||b| cosb

Cosine similarity

A-B=|A][B] cos

i

n

1

A; B;

Range: (A-B
-Tto1 Cosine similarity = c0s(8) = =

|A[[[[B]]
Angle 6

« 6 =0,cos(f) =1, maximum similarity
e 0 =290,cos(A) =0, unrelated
6 =180, cos(8) = —1, opposite direction

Cosine similarity is just the normalized dot
product

Cosine similarity vs dot product

Raw dot product:

a-b:Zaibg- =a1by +asby +---+a,b,
1=1

Because the dot product between a and b is the sum of the
products of their component in each dimension, the dot product
value is high when the vectors have large values in the same

dimensions

Cosine similarity vs dot product

Raw dot product:

a-b:Zaibg- =a1by +asby +---+a,b,
1=1

However, this is problematic because frequent words like “the” and
“of” have longer vector, and dot product overly favors them

This is why most of the time in NLP we will use cosine similarity of
two vectors instead of raw dot product.

Now, instead of vector a, let’s
think about a word embedding

Word association and context

* One of the many NLP tasks that uses “similarity”

* Here, we think about the topic and the environment/surroundings
that a word belongs to

* Some words are often seen together, sharing the same
surroundings

cider

* They are in the same “neighborhood” candy chocolate
« We wantto find these closely related words ”eai"sweet juice
* But first, we need to embed them into a Xy |
vector space, before we can find these Hing
clusters corn rice
beef drink

soup
potatoes fried

Getting the embeddings

* We decide the size of the dimension that we will be computing on

* Using the distributional information of a text corpus, we map
these words onto the vector space, then we can discover patterns
based on their relative distances to each other

* SO0 how to get these word embeddings?

* There are many methods, word2vec (Mikolov et al.), GloVe (Pennington et
al.)

* We will talk about word2vec in this lecture

Word2vec and skip-gram

Intuition: Consider these examples

“l want to add some to my coffee”

sugar, milk, cream

These words are not similar but related to coffee

“ Is sweet”

sugar, candy, lollipop

These words are (almost) similar in meaning

Skip-gram with negative sampling (SGNS)

* Word2vec method has many options (different objective
functions),

* one of them is skip-gram with negative sampling (SGNS)

* Intuition: the natural co-occurrence of words can be turned into
data that we train on
* if they do co-occur within a window length - positive example
* Randomly select other words as negative example
* No need to label any data.

* This is called self-supervision: using the data itself to generate labels/
supervisory signals

Approach: predict if candidate word c is a "neighbor"

1. Treat the targetword t and a neighboring context word c as positive
examples.

Randomly sample other words in the lexicon to get negative examples

Use logistic regression to train a classifier to distinguish those two
cases

4. Use the learned weights as the embeddings

Training sentence:
[tablespoon of apricot jam or]
c1 c2 W c3 c4

Assume a +/- 2 word window

Goal: train a classifier that is given a candidate (word, context) pair
+ positive example: (apricot, jam)
- negative example: (apricot,)

And assigns each pair a probability:
P(+|w, c)
P(=|w, c)=1-P(+|w, c)

Training sentence:

[tablespoon of apricot jam or]
c1 c2 Ww c3 c4

The intuition is that:

if aword’s embedding will be nearby another word’s embedding if these
two words are similar

* Mathematically, if two embeddings are nearby, their dot product will be high
* Since cosine similarity is a normalized dot product

* We assume that their cosine similarity will be high as well.

Turning dot products into probabilities

* wis the target word vector, c is one of target word’s context word’s vector

* Cosine similarity(w,c) X w - ¢

To turn this into a probability
* We'll use the sigmoid from logistic regression:

P(—F‘W,C) — G(C°W): 1_|_eXp1(—CW)
P(=w,c) = 1-P(+|wc)
1
— G(_C'W):

1+exp(c-w)

How Skip-Gram Classifier computes P(+|w, c)

1

P(+|w,c) = o(c-w)= I fexp(—c-w)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

L
P(_HW? CI:L) — H G(Ci . W) Log for easier math
=1

product 2 sum

log P(+|w,ci1.1)

L
Zlog o(ci-w)
i=1

Skip-gram classifier: summary

A probabilistic classifier, given
* atesttargetword w
* its context window of L words c¢;.;

Estimates probability that w occurs in this window based on similarity of w
(embeddings) to c,.,, (embeddings).

To compute this, we just need embeddings for all the words.

Skip-Gram Training data

[tablespoon of apricot jam or]

Cc1 c2 W c3 c4
positive examples + negative examples -
t C t C t C
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear

apricot a apricot coaxial apricotasif

Word2vec: how to learn vectors

* Given the set of positive and negative training
Instances, and an initial set of embedding vectors

* The goal of learning is to adjust those word vectors

such that we:

* Maximize the similarity of the target word, context word pairs (w, c,.s) drawn
from the positive data

* Minimize the similarity of the (w, c,..) pairs drawn from the negative data.

L oss function for one w with ¢

pos ? Cneg1 "‘Cnegk

Maximize the probability/similarity of the target with the actual context words.
Maximize the probability of neg samples being non-neighbors = Minimize the

similari

k
= —log P(+|w,cpos)HP(w,cneg,-)] Multiply because we

ty of the target with the k negative sampled non-neighbor words.

assume independence

i=1 1

1og P(++[W, Cpos) + Y _ 102 P(—|W, Cpeg,) 1+exp(—c-w)

I] P(+|w,c) = o(c-w)=

k
logP(+|W, Cpos) + Zlog (1 _P(_HW? Cnegi))]
i=1

k
10g G(Cpos : W}_—i_ Z log G(_Cnegi : W)]
i=1

Learning the classifier

* How to learn?
e Stochastic gradient descent!

* We’ll adjust the word weights to
* make the positive pairs more likely
* and the negative pairs less likely,
* over the entire training set.

Reminder: gradient descent

e Ateach step

* Direction: We move in the reverse direction from the gradient of the loss
function to minimize loss

« Magnitude: we move the value of this gradient ﬁL(f(x; w),y) weighted
by a learning rate n

* Higher learning rate means move w faster

+1 _ _ i
wl=w-h dWL(f(x,w), y)

The derivatives of the l?ss function

Lcg = — |logo(cpos - W) + Zlog O (—Cpeg, - W)
_ i—=1 i

To get gradient, we need to take the derivatives with respect to
pos and neg

8LCE B

acpos — [G(CPOS) W) o 1]W

dLcg

aCneg N [G<Cneg W)]W

dLcE ‘

ow

Update equation in SGD W= w-n L Lfoew),y)
dw Y

Start with randomly initialized C and W matrices, then incrementally do updates

t+1 ¢ ’ t t t . L
CpOS — CpOS — T’ -G(CpOS - W) — l]w Plug in the derivatives
r+1 t - t t t
Cneg Cneg — 1N _G(Cneg)]W

W = W =1 | [6(cpos W) — Ucpos + Y [0(Creg, - W')]Cneg,

Two sets of embeddings

SGNS learns two sets of embeddings
Target embeddings matrix W
Context embedding matrix C

It's common to just add them together, representing word / as the
vector Wi_l_ C;

Summary: How to learn word2vec (skip-gram)
embeddings

Start with Vrandom d-dimensional vectors as initial embeddings

Train a classifier based on embedding similarity
* Take a corpus and take pairs of words that co-occur as positive examples
* Take pairs of words that don't co-occur as negative examples

* Train the classifier to distinguish these by slowly adjusting all the embeddings
to improve the classifier performance

* Throw away the classifier code and keep the embeddings.

The kinds of neighbors depend on window size

Window size is a parameter we can tune on dev/val set, and it affects
performance.

Small windows (C= +/- 2) : nearest words are syntactically similar
words in same taxonomy

*Hogwarts nearest neighbors are other fictional schools
*Sunnydale, Evernight, Blandings

Large windows (C=+/-5) : nearest words are related words in same
semantic field

*Hogwarts nearest neighbors are Harry Potter world:
Dumbledore, half-blood, Malfoy

Analogy

AtoB (is like)/~ Xtowhat?

* E.g. woof to dog is like meow to *
Poetic example night sky
‘r”””””””””,,—ﬂ. <jog ‘.P”””’,,——””””’ﬂ.

stars

face

freckles

woof

meow

Analogy

Rumelhart and Abrahamson (1973) proposed the parallelogram
model

* A paperfrom cognitive psychology

* Survey on lower-division psychology class students from UCSD

dog

woof A. bush

cat D, ground
/ 1. B

2. D
meow 3. A
4. C

Caveats with the parallelogram method

* |t only seems to work for frequent words, small distances and
certain relations (relating countries to capitals, or parts of
speech), but not others. (Linzen 2016, Gladkova et al. 2016,
Ethayarajh et al. 2019a)

* Understanding analogy is an open area of research (Peterson et al.
2020)

Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, JamesY. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to
computer programmer as woman is to homemaker? debiasing word embeddings." In NeurlPS, pp.
4349-4357. 2016.

* Ask “Paris : France :: Tokyo : x”
* X =Japan

* Ask “father : doctor :: mother : x”
* X = nurse

* Ask “man : computer programmer :: woman : x”
* Xx =homemaker

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

Gender stereotype she-he analogies.

sewing-carpentry register-nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softhall-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky

sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.
queen-king sister-brother mother-father
waltress-waiter ovarian cancer-prostate cancer convent-monastery

https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520

Extreme she occupations

1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist

10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations

1. maestro 2. skipper 3. protege
4. philosopher 5. captain 6. architect
7. financier 8. warrior 9. broadcaster

10. magician 11. figher pilot 12. boss

https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520

Tracking the history of the meaning/usage of a

word

This is projected

onto a 2D space
using tSNE for
visualization

a -t gay (1900s) b
dat spread
flaunting sweet
tasteful 0 cheerful
pleasant
frolicsomge circulated

witt ay (1950s
! gh).’-iém) broadcast (1900s)

newspapers

gays

gay (1990s)
lesbian

Isexual

homosexual radio

broadcast (1850s)

television

hc broadcast (1990s)

C solemn
awful (1850s)

majestic
awe

dread ensive

gloé'my

horrible

appalliwg terrible
awful (1900s) ,
wonderful

awful (1990s)
awfullff‘xe” d

For example, these figures shows a visualization of changes in meaning in English words over
the last two centuries, computed by building separate embedding spaces for each decade
from historical corpora like Google N-grams and the Corpus of Historical American English.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical Laws of

Semantic Change. Proceedings of ACL.

Historical embedding as a tool to study cultural biases

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences 115(16), E3635—-E3644.

* Compute a gender or ethnic bias for each adjective: e.g., how much closer
the adjective is to "woman" synonyms than "man" synonyms, or names of
particular ethnicities

Embeddings for competence adjective (smart, wise, brilliant,

resourceful, thoughtful, logical) are biased toward men, a bias slowly

decreasing 1960-1990

Embeddings for dehumanizing adjectives (barbaric, monstrous, bizarre)

were biased toward Asians in the 1930s, bias decreasing over the 20t

century.

* These match the results of old surveys done in the 1930s, and the
bias decreased in both text and surveys over the 20t century

	Slide 1: Word Embeddings
	Slide 2: Logistics
	Slide 3: Feature vector using word count
	Slide 4: What’s a word embedding?
	Slide 5: Similarity in NLP
	Slide 6: Similarity in NLP
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Dot product review
	Slide 11: Cosine similarity
	Slide 12: Cosine similarity vs dot product
	Slide 13: Cosine similarity vs dot product
	Slide 14: Now, instead of vector a, let’s think about a word embedding
	Slide 15: Word association and context
	Slide 16: Getting the embeddings
	Slide 17: Word2vec and skip-gram
	Slide 18: Intuition: Consider these examples
	Slide 19: Skip-gram with negative sampling (SGNS)
	Slide 20: Approach: predict if candidate word c is a "neighbor"
	Slide 21
	Slide 22
	Slide 23: Turning dot products into probabilities
	Slide 24: How Skip-Gram Classifier computes P(+|w, c)
	Slide 25: Skip-gram classifier: summary
	Slide 26: Skip-Gram Training data
	Slide 27: Word2vec: how to learn vectors
	Slide 28: Loss function for one w with cpos , cneg1 ...cnegk
	Slide 29: Learning the classifier
	Slide 30: Reminder: gradient descent
	Slide 31: The derivatives of the loss function
	Slide 32: Update equation in SGD
	Slide 33: Two sets of embeddings
	Slide 34: Summary: How to learn word2vec (skip-gram) embeddings
	Slide 35: The kinds of neighbors depend on window size
	Slide 36: Analogy
	Slide 37: Analogy
	Slide 38: Caveats with the parallelogram method
	Slide 39: Embeddings reflect cultural bias!
	Slide 40
	Slide 41
	Slide 42: Tracking the history of the meaning/usage of a word
	Slide 43: Historical embedding as a tool to study cultural biases

