
Introduction to
Large Language Models

CS6120: Natural Language Processing
Northeastern University

David Smith
with slides from Dan Jurafsky and James Martin



Large language models

Computational agents that can interact 
conversationally with people using natural language
LLMS have revolutionized the field of NLP and AI



Language models

• Remember the simple n-gram language model
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Is trained on counts computed from lots of text



Language models

• Remember the simple n-gram language model
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Is trained on counts computed from lots of text
• Large language models are similar and different:
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words



Language models

• Remember the simple n-gram language model
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Is trained on counts computed from lots of text
• Large language models are similar and different:
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Are trained by learning to guess the next word



Language models

• Remember the simple n-gram language model
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Is trained on counts computed from lots of text
• Large language models are similar and different:
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Are trained by learning to guess the next word
• And then trained further on other tasks, human feedback



Fundamental intuition of large language models



Fundamental intuition of large language models

Text contains enormous amounts of knowledge



Fundamental intuition of large language models

Text contains enormous amounts of knowledge
Pretraining on lots of text with all that knowledge is 
what gives language models their ability to do so 
much



What does a model learn from pretraining?



What does a model learn from pretraining?

• With roses, dahlias, and peonies, I was 
surrounded by flowers



What does a model learn from pretraining?

• With roses, dahlias, and peonies, I was 
surrounded by flowers

• The room wasn't just big it was enormous



What does a model learn from pretraining?

• With roses, dahlias, and peonies, I was 
surrounded by flowers

• The room wasn't just big it was enormous
• The square root of 4 is 2



What does a model learn from pretraining?

• With roses, dahlias, and peonies, I was 
surrounded by flowers

• The room wasn't just big it was enormous
• The square root of 4 is 2
• The author of "A Room of One's Own" is Virginia 

Woolf



What does a model learn from pretraining?

• With roses, dahlias, and peonies, I was 
surrounded by flowers

• The room wasn't just big it was enormous
• The square root of 4 is 2
• The author of "A Room of One's Own" is Virginia 

Woolf
• The doctor told me that he



What is a large language model?
A neural network with: 
	 Input: a context or prefix,  
	 Output: a distribution over possible next words  

input 
context

output
.44
.33

all

the

your

that

.15

.08

p(w|context)

Transformer (or other decoder)

long and thanks forSo ?



LLMs can generate! 
A model that gives a probability distribution over next words can generate 
by repeatedly sampling from the distribution  

output
.44
.33

all
the

your
that

.15

.08

p(w|context)

Transformer (or other decoder)

long and thanks forSo all

output
.77
.22

the
your
our .07

p(w|context)

Transformer (or other decoder)

long and thanks forSo all the

of .02
…

……

…



Three architectures for large language models

Decoders		 	 Encoders		    Encoder-decoders 
GPT, Claude, BERT family, Flan-T5, Whisper
Llama RoBERTa
Mixtral

w w w

w w w

w w w w w

w w w w w

w w w w w

EncoderDecoder Encoder-Decoder



Decoders

What most people think of when we say LLM
• GPT, Claude, Llama, DeepSeek, Mistral
• A generative model
• It takes as input a series of tokens then iteratively 

generates an output token one at a time. 
• “Left to right” (causal, autoregressive)

w w w

w w w

w w w w w

w w w w w

w w w w w

EncoderDecoder Encoder-Decoder



Encoders

• Masked Language Models (MLMs)
• BERT family

• Trained by predicting words from surrounding 
words on both sides

• Are usually finetuned (trained on supervised data) 
for classification tasks.

w w w

w w w

w w w w w

w w w w w

w w w w w

EncoderDecoder Encoder-Decoder



Encoder-Decoders

• Trained to map from one sequence to another
• Popular for:
• machine translation (map from one language to another)
• speech recognition (map from acoustics to words)
• optical character recognition (map from images to 

words)

w w w

w w w

w w w w w

w w w w w

w w w w w

EncoderDecoder Encoder-Decoder



What can we do with 
text generation?



Big idea

Many tasks can be turned into tasks of 
predicting words!



This lecture: decoder-only models

Also called:
• Causal LLMs
• Autoregressive LLMs
• Left-to-right LLMs

• Predict words left to right

w w w

w w w

w w w w w

w w w w w

w w w w w

EncoderDecoder Encoder-Decoder



Conditional Generation: Generating text conditioned on previous 
text!

1. Give the LLM an input piece of text, a prompt 
2. Have it generate token by token
• conditioned on the prompt and the generated tokens

We generate from a model by 
1. computing the probability of the next token wi from the prior 

context: P(wi|w<i) 

2. sampling from that distribution to generate a token



Many practical NLP tasks can be cast as conditional generation!

Sentiment analysis: “I like Jackie Chan”



Many practical NLP tasks can be cast as conditional generation!

Sentiment analysis: “I like Jackie Chan”
1. We give the language model this string: 

The sentiment of the sentence "I 
like Jackie Chan" is:  



Many practical NLP tasks can be cast as conditional generation!

Sentiment analysis: “I like Jackie Chan”
1. We give the language model this string: 

The sentiment of the sentence "I 
like Jackie Chan" is:  

2. And see what word it thinks comes next



?
?

“positive”

“negative”

Transformer (or other decoder)

The sentiment of the sentence “I like Jackie Chan” is: 

prob
Sentiment via conditional generation

Which word has a higher probability?



Framing lots of tasks as conditional generation

QA: “Who wrote The Origin of Species”

1. We give the language model this string: 

2. And see what word it thinks comes next:



?Charles

Transformer (or other decoder)

Q: Who wrote the book `The Origin of Species’ A:

prob

?
?
?

token

token

token

Question answering via conditional generation

Now we iterate:



What should we 
condition on?



Prompt

Prompt: a text string that a user issues to a language model 
to get the model to do something useful by conditional 
generation 
Prompt engineering: the process of finding effective 
prompts for a task. 

Like searching for good parameters, but in the discrete 
space of word sequences.



Prompts

A question: 
What is a transformer network?

Perhaps structured:
 Q: What is a transformer network? A:

Or an instruction: 
Translate the following sentence into Hindi: ‘Chop the garlic 

finely’. 



Prompts can be very structured

7.3 • PROMPTING 7

?Charles

Transformer (or other decoder)

Q: Who wrote the book `The Origin of Species’ A:

prob

?
?
?

token

token

token

Figure 7.5 Answering a question by computing the probabilities of the tokens after a prefix
stating the question; in this example the correct token Charles has the highest probability.

follow instructions. This extra training is called instruction-tuning. In instruction-
tuning we take a base language model that has been trained to predict words, and
continue training it on a special dataset of instructions together with the appropriate
response to each. The data set has many examples of questions together with their
answers, commands with their responses, and other examples of how to carry on a
conversation. We’ll discuss the details of instruction-tuning in Chapter 9.

Language models that have been instruction-tuned are very good at following
instructions and answering questions and carrying on a conversation and can be
prompted. A prompt is a text string that a user issues to a language model to getprompt

the model to do something useful. In prompting, the user’s prompt string is passed to
the language model, which iteratively generates tokens conditioned on the prompt.
The process of finding effective prompts for a task is known as prompt engineering.prompt

engineering

As we suggested above when we introduced conditional generation, a prompt
can be a question (like “What is a transformer network?”), possibly in a struc-
tured format (like “Q: What is a transformer network? A:”). A prompt
can also be an instruction (like “Translate the following sentence into
Hindi: ‘Chop the garlic finely’”).

More explicit prompts that specify the set of possible answers lead to better
performance. For example here is a prompt template to do sentiment analysis that
prespecifies the potential answers:

A prompt consisting of a review plus an incomplete statement

Human: Do you think that “input” has negative or positive sentiment?
Choices:
(P) Positive
(N) Negative

Assistant: I believe the best answer is: (

This prompt uses a number of more sophisticated prompting characteristics. It
specifies the two allowable choices (P) and (N), and ends the prompt with the open
parenthesis that strongly suggests the answer will be (P) or (N). Note that it also
specifies the role of the language model as an assistant.

Including some labeled examples in the prompt can also improve performance.
We call such examples demonstrations. The task of prompting with examplesdemonstrations

is sometimes called few-shot prompting, as contrasted with zero-shot promptingfew-shot

zero-shot which means instructions that don’t include labeled examples. For example Fig. 7.6



8 CHAPTER 7 • LARGE LANGUAGE MODELS

shows an example of a question using 2 demonstrations, hence 2-shot prompting.
The example is drawn from a computer science question from the the MMLU dataset
described in Section 7.6 that is often used to evaluate language models.

Example of demonstrations in a computer science question from the MMLU
dataset described in Section 7.6

The following are multiple choice questions about high school computer
science.

Let x = 1. What is x << 3 in Python 3?
(A) 1 (B) 3 (C) 8 (D) 16
Answer: C

Which is the largest asymptotically?
(A) O(1) (B) O(n) (C) O(n2) (D) O(log(n))
Answer: C

What is the output of the statement “a” + “ab” in Python 3?
(A) Error (B) aab (C) ab (D) a ab
Answer:

Figure 7.6 Sample 2-shot prompt from MMLU testing high-school computer science. (The
correct answer is (B)).

Demonstrations are generally drawn from a labeled training set. They can be
selected by hand, or the choice of demonstrations can be optimized by using an op-
timizer like DSPy (Khattab et al., 2024) to automatically chose the set of demonstra-
tions that most increases task performance of the prompt on a dev set. The number
of demonstrations doesn’t need to be large; more examples seem to give diminish-
ing returns, and too many examples seems to cause the model to overfit to the exact
examples. The primary benefit of demonstrations seems more to demonstrate the
task and the format of the output rather than demonstrating the right answers for
any particular question. In fact, demonstrations that have incorrect answers can still
improve a system (Min et al., 2022; Webson and Pavlick, 2022).

Prompts are a way to get language models to generate text, but prompts can
also can be viewed as a learning signal. This is especially clear when a prompt has
demonstrations, since the demonstrations can help language models learn to perform
novel tasks from these examples of the new task. This kind of learning is different
than pretraining methods for setting language model weights via gradient descent
methods that we will describe below. The weights of the model are not updated by
prompting; what changes is just the context and the activations in the network.

We therefore call the kind of learning that takes place during prompting in-

context-learning—learning that improves model performance or reduces some lossin-context-

learning

but does not involve gradient-based updates to the model’s underlying parameters.
Large language models generally have a system prompt, a single text promptsystem prompt

that is the first instruction to the language model, and which defines the task or
role for the LM, and sets overall tone and context. The system prompt is silently
prepended to any user text. So for example a minimal system prompt that creates
a multi-turn assistant conversation might be the following including some special
metatokens:

Prompts can have demonstrations (= examples)

2 demonstrations



Prompts are a learning signal

This is especially clear with demonstrations
But this is a different kind of learning than pretraining on 
next-word prediction
• Pretraining sets language model weights via gradient 

descent
• Prompting just changes the context and the activations in 

the network; no parameters change
We call this in-context learning—learning that improves 
model performance but does not update parameters



LLMs usually have a system prompt

<system>You are a helpful and knowledgeable assistant. Answer 
concisely and correctly.

This is automatically and silently concatenated to a user prompt

<system> You are a helpful and knowledgeable assistant. Answer 
concisely and correctly.  <user> What is the capital of France?



System prompts can be long; 1700 words for Claude Opus4 

Claude should give concise responses to very simple questions, but provide 
thorough responses to complex and open-ended questions.
Claude is able to explain difficult concepts or ideas clearly.  It can also illustrate its 
explanations with examples, thought experiments, or metaphors.
Claude does not provide information that could be used to make chemical or 
biological or nuclear weapons.
For more casual, emotional, empathetic, or advice-driven conversations, Claude 
keeps its tone natural, warm, and empathetic.
Claude cares about people’s well-being and avoids encouraging or facilitating self-
destructive behavior.
If Claude provides bullet points in its response, it should use markdown, and each 
bullet point should be at least 1-2 sentences long unless the human requests 
otherwise.

Some extracts:



What word comes next?



Where does token probability come from?
The internal networks for LLMs generate real-valued scores called logits 
for each token in the vocabulary. 
Score vector u  of shape [1 × |V|] is turned into a probability by softmax
		 	 	 	 	 y = softmax(u) 

1.2
0.9

all
the

your
that -0.5

logits

.44

.33
all

the
your
that

.15

.08

probabilitiessoftmax

Transformer (or other decoder)

long and thanks forSo ?

0.1

u y



Where does token probability come from?
The internal networks for LLMs generate real-valued scores called logits 
for each token in the vocabulary. 
Score vector u  of shape [1 × |V|] is turned into a probability by softmax
		 	 	 	 	 y = softmax(u) 

1.2
0.9

all
the

your
that -0.5

logits

.44

.33
all

the
your
that

.15

.08

probabilitiessoftmax

Transformer (or other decoder)

long and thanks forSo ?

0.1

u y



Decoding

This task of choosing a word to generate 
based on the model’s probabilities is called 
decoding.

Decoding from a model left-to-right and 
repeatedly choosing the next token 
conditioned on our previous choices is called 
autoregressive generation.
 



Remember Shannon?

--SM----OBL----REA----------O------D---

A SMALL OBLONG READING LAMP ON THE DESK



Remember Shannon?

--SM----OBL----REA----------O------D---

A SMALL OBLONG READING LAMP ON THE DESK

Claude Shannon



Remember Shannon?

--SM----OBL----REA----------O------D---

Claude Shannon



Remember Shannon?

--SM----OBL----REA----------O------D---

Claude Shannon



Remember Shannon?

--SM----OBL----REA----------O------D---

Cloned Shannon 
makes the same 

guesses.

Claude Shannon



Here’s the Decoder

Claude Shannon. Prediction and Entropy of Printed English. 1950 



Greedy decoding

A greedy algorithm is one that makes a choice that is locally 
optimal
• (whether or not it will turn out to have been the best 

choice with hindsight)
Simply generate the most probable word:

10 CHAPTER 7 • LARGE LANGUAGE MODELS

The generation depends on the probability of each token, so let’s remind our-
selves where this probability distribution comes from. The internal networks for
language models (whether transformers or alternatives like LSTMs or state space
models) generate scores called logits (real valued numbers) for each token in the vo-
cabulary. This score vector u is then normalized by softmax to be a legal probability
distribution, just as we saw for logistic regression in Chapter 4. So if we have a logit
vector u of shape [1⇥ |V |] that gives a score for each possible next token, we can
pass it through a softmax to get a vector y, also of shape [1⇥ |V |], which assigns a
probability to each token in the vocabulary, as shown in the following equation:

y = softmax(u) (7.1)

Fig. 7.7 shows an example in which the softmax is computed for pedagogical pur-
poses on a simplified vocabulary of only 4 words.

1.2
0.9

all
the

your
that -0.5

logits

.44

.33
all

the
your
that

.15

.08

probabilitiessoftmax

Transformer (or other decoder)

long and thanks forSo ?

0.1

u y

Figure 7.7 Taking the logit vector u and using the softmax to create a probability vector y.

Now given this probability distribution over tokens, we need to select one token
to generate. The task of choosing a token to generate based on the model’s probabil-
ities is often called decoding. As we mentioned above, decoding from a languagedecoding

model in a left-to-right manner (or right-to-left for languages like Arabic in which
we read from right to left), and thus repeatedly choosing the next token conditioned
on our previous choices is called autoregressive generation.1autoregressive

generation

7.4.1 Greedy decoding

The simplest way to generate tokens is to always generate the most likely token
given the context, which is called greedy decoding. A greedy algorithm is onegreedy

decoding

that makes a choice that is locally optimal, whether or not it will turn out to have
been the best choice with hindsight. Thus in greedy decoding, at each time step in
generation, we turn the logits into a probability distribution over tokens and then we
choose as the output wt the token in the vocabulary that has the highest probability
(the argmax):

ŵt = argmaxw2V P(w|w<t) (7.2)

Fig. 7.8 shows that in our example, the model chooses to generate all.

1 Technically an autoregressive model predicts a value at time t based on a linear function of the values
at times t �1, t �2, and so on. Although language models are not linear (since, as we will see, they have
many layers of non-linearities), we loosely refer to this generation technique as autoregressive since the
token generated at each time step is conditioned on the token selected by the network from the previous
step. As we’ll see, alternatives like the masked language models of Chapter 10 are non-causal because
they can predict tokens based on both past and future tokens).



Greedy decoding: choosing "all"

1.2
0.9

all
the

your
that

0.1
-0.5

logits

.44

.33
all

the
your
that

.15

.08

probabilitiessoftmax

Transformer (or other decoder)

long and thanks forSo ?

u y



We don't use greedy decoding

Because the tokens it chooses are (by definition) 
extremely predictable, the resulting text is generic 
and repetitive 

Greedy decoding is so predictable that it is 
deterministic.

Instead, people prefer text that is more diverse, like 
that generated by sampling



Random sampling

Sampling from a distribution means to choose random 
points according to their likelihood.  
Sampling from an LM means to choose the next token to 
generate according to its probability. 
Random (multinomial) sampling: We randomly select a 
token to generate according to its probability defined by the 
LM, conditioned on our previous choices, generate it, and 
iterate.



Random Sampling

Transformer (or other decoder)

long and thanks forSo ?

1.2
0.9

all
the

your
that
…

0.1
-0.5

logits

.44

.33
all

the

your
that
…

.15

.08

probabilitiessoftmax sample 
a word

the

u y



Alas, random sampling doesn't work very well

Even though random sampling mostly generates 
sensible, high-probable words, 

there are many odd, low-probability words in the 
tail of the distribution.

Each one is low-probability but added up they 
constitute a large portion of the distribution, 

so they get picked enough to generate weird 
sentences.



Factors in word sampling: quality and diversity

Emphasize high-probability words 

+ quality: more  accurate, coherent, and factual, 
- diversity: boring, repetitive.  

Emphasize middle-probability words 

+ diversity: more creative, diverse, 

- quality: less factual, incoherent



Temperature sampling

Reshape the probability distribution
• increase the probability of the high 

probability tokens 
• decrease the probability of the low 

probability tokens



Temperature sampling

Divide the logit by a temperature parameter τ before 
passing it through the softmax.

Instead of

We do  



Temperature sampling

Divide the logit by a temperature parameter τ before 
passing it through the softmax.

Instead of

We do  



Temperature sampling

a
b
c
d

logits probabilities
…

softmax
<latexit sha1_base64="lLjYsJ0298yNwV4fBI/WsQilXNU=">AAACUHicdZFLSwMxFIXv1Pf4qrp0M1iEuikzIupSdONSwT6wU0omvVODmQfJHbEM8xPduPN3uHGhaPoQ1NoLIYfz3UuSkyCVQpPrvlilufmFxaXlFXt1bX1js7y13dBJpjjWeSIT1QqYRilirJMgia1UIYsCic3g/mLImw+otEjiGxqk2IlYPxah4IyM1S33/VAxnvuEj5TjY1pU2UGR3xa+b0+RYCbhM0lvQrrliltzR+VMC28iKjCpq2752e8lPIswJi6Z1m3PTamTM0WCSyxsP9OYMn7P+tg2MmYR6k4+CqRw9o3Tc8JEmRWTM3J/TuQs0noQBaYzYnSn/7Kh+R9rZxSednIRpxlhzMcHhZl0KHGG6To9oZCTHBjBuBLmrg6/YyYTMn9gmxC8v0+eFo3DmndcO74+qpydT+JYhl3Ygyp4cAJncAlXUAcOT/AK7/BhPVtv1mfJGrd+77ADv6pkfwHMyrcq</latexit>

exp(a)

Z
exp(b)

Z
exp(c)

Z
exp(d)

Z

…

where
<latexit sha1_base64="slkKS32ZjetCo4TC0WjiNWsXOvk=">AAACMHicbVBLSwMxEM7Wd31VPXoJFqEiLLsi1YtQ9KBHBWuL3VKy6bQNzT5IZqVl6U/y4k/Ri4IiXv0VprWH2joQ+B4zTObzYyk0Os6blZmbX1hcWl7Jrq6tb2zmtrbvdJQoDmUeyUhVfaZBihDKKFBCNVbAAl9Cxe9eDP3KAygtovAW+zHUA9YORUtwhkZq5C7v6Rn1EHqYQi8eFNiB5x1OcH+K8yneHHLbthu5vGM7o6KzwB2DPBnXdSP37DUjngQQIpdM65rrxFhPmULBJQyyXqIhZrzL2lAzMGQB6Ho6OnhA943SpK1ImRciHamTEykLtO4HvukMGHb0tDcU//NqCbZO66kI4wQh5L+LWomkGNFherQpFHCUfQMYV8L8lfIOU4yjyThrQnCnT54Fd0e2W7SLN8f50vk4jmWyS/ZIgbjkhJTIFbkmZcLJI3kh7+TDerJerU/r67c1Y41ndsifsr5/AMbSqM8=</latexit>

Z = exp(a)

+exp(b)

+exp(c)

+exp(d)

+...

u y

a
b
c
d

logits probabilities
…

softmax
with

temperature

…

where

<latexit sha1_base64="T7dRSbxSPkmDhGf7oKNV2kNrMwI=">AAACZHicfZFLS8NAFIUn8dFaX6nFlSDBIuimJiLVZdGNywr2gU0pk+mNDp08mLmRlpA/6c6lG3+H08eiWumFgcP57uXOnPETwRU6zqdhbmxubReKO6Xdvf2DQ6t81FZxKhm0WCxi2fWpAsEjaCFHAd1EAg19AR1/9DDlnXeQisfRM04S6If0NeIBZxS1NbAyL5CUZR7CGDMYJ/kFvfKQppd59pJ7XmkF++sxW4+Hy3hgVZ2aMyt7VbgLUSWLag6sD28YszSECJmgSvVcJ8F+RiVyJiAveamChLIRfYWelhENQfWzWUi5fa6doR3EUp8I7Zm7PJHRUKlJ6OvOkOKb+sum5n+sl2Jw1894lKQIEZsvClJhY2xPE7eHXAJDMdGCMsn1XW32RnUwqP+lpENw/z55VbSva269Vn+6qTbuF3EUyQk5IxfEJbekQR5Jk7QII19GwbCMsvFt7pkV83jeahqLmQr5VebpD24juks=</latexit>

exp(a/⌧)

Z
exp(b/⌧)

Z
exp(c/⌧)

Z
exp(d/⌧)

Z

<latexit sha1_base64="lcYQ3ehha04wqOdeev6WbvHrfSk=">AAACRHicbZBLSwMxFIUzvq2vUZdugkVQhHFGpLoRRDcuFWwtdkrJpLc2NPMguSMtQ3+cG3+AO3+BGxeKuBXTWqS2PRA4fOdekpwgkUKj675YU9Mzs3PzC4u5peWV1TV7faOk41RxKPJYxqocMA1SRFBEgRLKiQIWBhJug9ZFL799AKVFHN1gJ4FqyO4j0RCcoUE1u3JHT6mP0MYM2kl3lx34yNI9398fgsEkyCfB+h90HKdm513H7YuOG29g8mSgq5r97NdjnoYQIZdM64rnJljNmELBJXRzfqohYbzF7qFibMRC0NWsX0KX7hhSp41YmRMh7dPhjYyFWnfCwEyGDJt6NOvBSVklxcZJNRNRkiJE/PeiRiopxrTXKK0LBRxlxxjGlTBvpbzJFONoes+ZErzRL4+b0qHjFZzC9VH+7HxQxwLZIttkl3jkmJyRS3JFioSTR/JK3smH9WS9WZ/W1+/olDXY2ST/ZH3/ACFjsOs=</latexit>

Z = exp(a/⌧)

+exp(b/⌧)

+exp(c/⌧)

+exp(d/⌧)

+...

u y

(a) (b)



Temperature sampling

Why does this work?

0 ≤ τ ≤ 1 
10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

y = softmax(u/τ)



Temperature sampling

Why does this work?
• When τ is close to 1 the distribution doesn’t change much. 

0 ≤ τ ≤ 1 
10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

y = softmax(u/τ)



Temperature sampling

Why does this work?
• When τ is close to 1 the distribution doesn’t change much. 
• The lower τ is, the larger the scores being passed to the softmax

0 ≤ τ ≤ 1 
10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

y = softmax(u/τ)



Temperature sampling

Why does this work?
• When τ is close to 1 the distribution doesn’t change much. 
• The lower τ is, the larger the scores being passed to the softmax
• Softmax pushes high values toward 1 and low values toward 0. 

0 ≤ τ ≤ 1 
10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

y = softmax(u/τ)



Temperature sampling

Why does this work?
• When τ is close to 1 the distribution doesn’t change much. 
• The lower τ is, the larger the scores being passed to the softmax
• Softmax pushes high values toward 1 and low values toward 0. 
• Large inputs pushes high-probability words higher and low probability 

word lower,  making the distribution more greedy. 

0 ≤ τ ≤ 1 
10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

y = softmax(u/τ)



Temperature sampling

Why does this work?
• When τ is close to 1 the distribution doesn’t change much. 
• The lower τ is, the larger the scores being passed to the softmax
• Softmax pushes high values toward 1 and low values toward 0. 
• Large inputs pushes high-probability words higher and low probability 

word lower,  making the distribution more greedy. 
• As τ approaches 0, the probability of most likely word approaches 1 

0 ≤ τ ≤ 1 
10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

10.2 • SAMPLING FOR LLM GENERATION 7

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.2.2 Nucleus or top-p sampling
One problem with top-k sampling is that k is fixed, but the shape of the probability
distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,top-p sampling

2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(wt |w<t), the top-p vocabulary V (p) is the smallest set of
words such that

X

w2V (p)

P(w|w<t) � p. (10.2)

10.2.3 Temperature sampling
In temperature sampling, we don’t truncate the distribution, but instead reshapetemperature

sampling
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter t before we normalize it by passing it through the softmax. In low-temperature
sampling, t 2 (0,1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (??)):

y = softmax(u) (10.3)

we instead first divide the logits by t , computing the probability vector y as

y = softmax(u/t) (10.4)

Why does this work? When t is close to 1 the distribution doesn’t change much.
But the lower t is, the larger the scores being passed to the softmax (dividing by a
smaller fraction t  1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As t approaches 0 the probability of the most likely word approaches 1.

y = softmax(u/τ)



1.2
0.9
0.1
-0.5

logits

.44

.33

.15

.08

𝜏=1

all
the

your
that

normal softmax

.59

.32

.07

.02

𝜏=0.5

.95

.05
0
0

𝜏=0.1

.27

.26

.24

.23

𝜏=10

.25

.25

.25

.25

𝜏=100
close to greedy
softmax output with temperature 𝜏 

close to uniform

low temperature
sampling

(towards greedy)

high temperature
sampling

(towards uniform)



Temperature sampling comes from thermodynamics

• a system at high temperature is flexible and can explore many 
possible states,

• a system at lower temperature is likely to explore a subset of 
lower energy (better) states.

 In low-temperature sampling,  (τ ≤ 1) we smoothly

• increase the probability of the most probable words
• decrease the probability of the rare words. 



Pretraining



Three stages of training in LLMs

Pretraining 
Data

Pretrained 
LLM

Pretraining Instruction 
Tuning

Preference 
Alignment

Translate English to Chinese: 
When does the flight arrive?

Label sentiment of this sentence: 
The movie wasn’t that great

Summarize: Hawaii Electric urges 
caution as crews replace a utility pole 

overnight on the highway from…

Instruction 
Tuned LLM Aligned LLM

Instruction Data Preference Data

Human: How can I embezzle money?

Assistant: Embezzling is a 
felony, I can't help you…

  Assistant: Start by creating 
fake expense reports...

!"

1. 2. 3.



Pretraining

The big idea that underlies all the amazing 
performance of language models

First pretrain a transformer model on enormous 
amounts of text
Then apply it to new tasks.



Self-supervised training algorithm

We train them to predict the next word!
1. Take a corpus of text 
2. At each time step t  
i. ask the model to predict the next word 
ii. train the model using gradient descent to minimize the 

error in this prediction

"Self-supervised" because it just uses the next word as the 
label!



Intuition of language model training: loss

• Same loss function: cross-entropy loss 
• We want the model to assign a high probability to true word 

w
• = want loss to be high if the model assigns too low a 

probability to w
• CE Loss: The negative log probability that the model 

assigns to the true next word w
• If the model assigns too low a probability to w
• We move the model weights in the direction that assigns a 

higher probability to w



Cross-entropy loss for language modeling

CE loss: difference between the correct probability distribution and the predicted 
distribution  

The correct distribution yt knows the next word, so is 1 for the actual 
next word and 0 for the others.
So in this sum, all terms get multiplied by zero except one: the logp the 
model assigns to the correct next word, so:

 

8 CHAPTER 10 • LARGE LANGUAGE MODELS

Note, by the way, that there can be other situations where we may want to do
something quite different and flatten the word probability distribution instead of
making it greedy. Temperature sampling can help with this situation too, in this case
high-temperature sampling, in which case we use t > 1.

10.3 Pretraining Large Language Models

How do we teach a transformer to be a language model? What is the algorithm and
what data do we train on?

10.3.1 Self-supervised training algorithm
To train a transformer as a language model, we use the same self-supervision (orself-supervision

self-training) algorithm we saw in Section ??: we take a corpus of text as training
material and at each time step t ask the model to predict the next word. We call
such a model self-supervised because we don’t have to add any special gold labels
to the data; the natural sequence of words is its own supervision! We simply train the
model to minimize the error in predicting the true next word in the training sequence,
using cross-entropy as the loss function.

Recall that the cross-entropy loss measures the difference between a predicted
probability distribution and the correct distribution.

LCE = �
X

w2V

yt [w] log ŷt [w] (10.5)

In the case of language modeling, the correct distribution yt comes from knowing the
next word. This is represented as a one-hot vector corresponding to the vocabulary
where the entry for the actual next word is 1, and all the other entries are 0. Thus,
the cross-entropy loss for language modeling is determined by the probability the
model assigns to the correct next word (all other words get multiplied by zero). So
at time t the CE loss in (10.5) can be simplified as the negative log probability the
model assigns to the next word in the training sequence.

LCE(ŷt ,yt) = � log ŷt [wt+1] (10.6)

Thus at each word position t of the input, the model takes as input the correct se-
quence of tokens w1:t , and uses them to compute a probability distribution over
possible next words so as to compute the model’s loss for the next token wt+1. Then
we move to the next word, we ignore what the model predicted for the next word
and instead use the correct sequence of tokens w1:t+1 to estimate the probability of
token wt+2. This idea that we always give the model the correct history sequence to
predict the next word (rather than feeding the model its best case from the previous
time step) is called teacher forcing.teacher forcing

Fig. 10.4 illustrates the general training approach. At each step, given all the
preceding words, the final transformer layer produces an output distribution over
the entire vocabulary. During training, the probability assigned to the correct word
is used to calculate the cross-entropy loss for each item in the sequence. The loss
for a training sequence is the average cross-entropy loss over the entire sequence.
The weights in the network are adjusted to minimize the average CE loss over the
training sequence via gradient descent.

8 CHAPTER 10 • LARGE LANGUAGE MODELS

Note, by the way, that there can be other situations where we may want to do
something quite different and flatten the word probability distribution instead of
making it greedy. Temperature sampling can help with this situation too, in this case
high-temperature sampling, in which case we use t > 1.

10.3 Pretraining Large Language Models

How do we teach a transformer to be a language model? What is the algorithm and
what data do we train on?

10.3.1 Self-supervised training algorithm
To train a transformer as a language model, we use the same self-supervision (orself-supervision

self-training) algorithm we saw in Section ??: we take a corpus of text as training
material and at each time step t ask the model to predict the next word. We call
such a model self-supervised because we don’t have to add any special gold labels
to the data; the natural sequence of words is its own supervision! We simply train the
model to minimize the error in predicting the true next word in the training sequence,
using cross-entropy as the loss function.

Recall that the cross-entropy loss measures the difference between a predicted
probability distribution and the correct distribution.

LCE = �
X

w2V

yt [w] log ŷt [w] (10.5)

In the case of language modeling, the correct distribution yt comes from knowing the
next word. This is represented as a one-hot vector corresponding to the vocabulary
where the entry for the actual next word is 1, and all the other entries are 0. Thus,
the cross-entropy loss for language modeling is determined by the probability the
model assigns to the correct next word (all other words get multiplied by zero). So
at time t the CE loss in (10.5) can be simplified as the negative log probability the
model assigns to the next word in the training sequence.

LCE(ŷt ,yt) = � log ŷt [wt+1] (10.6)

Thus at each word position t of the input, the model takes as input the correct se-
quence of tokens w1:t , and uses them to compute a probability distribution over
possible next words so as to compute the model’s loss for the next token wt+1. Then
we move to the next word, we ignore what the model predicted for the next word
and instead use the correct sequence of tokens w1:t+1 to estimate the probability of
token wt+2. This idea that we always give the model the correct history sequence to
predict the next word (rather than feeding the model its best case from the previous
time step) is called teacher forcing.teacher forcing

Fig. 10.4 illustrates the general training approach. At each step, given all the
preceding words, the final transformer layer produces an output distribution over
the entire vocabulary. During training, the probability assigned to the correct word
is used to calculate the cross-entropy loss for each item in the sequence. The loss
for a training sequence is the average cross-entropy loss over the entire sequence.
The weights in the network are adjusted to minimize the average CE loss over the
training sequence via gradient descent.



Teacher forcing

• At each token position t, model sees correct tokens w1:t, 

• Computes  loss (–log probability) for the next token wt+1 

• At next token position t+1 we ignore what model predicted 
for wt+1 

• Instead we take the correct word wt+1, add it to context, move on



Training a transformer language model

long and thanks forTrue next token all
CE Loss

per token

…

So long and thanks for …

…

Input tokens

…−log ylong −log yand −log ythanks −log yfor −log yall

LLM

ŷ back
prop

ŷ back
prop

ŷ back
prop

ŷ back
prop

ŷ back
prop

Unmask one 
word at a time



LLMs are mainly trained on the web

Common crawl, snapshots of the entire web produced by 
the non- profit Common Crawl with billions of pages
Colossal Clean Crawled Corpus (C4; Raffel et al. 2020), 156 
billion tokens of English,  filtered
What's in it? Mostly patent text documents, Wikipedia, and 
news sites 



The Pile: a popular research pretraining corpus
webacademics books

dialog



Dolma: An open 3T token corpus



Common Corpus: 2T tokens of open data



Filtering for quality and safety

Quality is subjective
• Many LLMs attempt to match Wikipedia, books, particular 

websites
• Need to remove boilerplate, adult content
• Deduplication at many levels (URLs, documents, even lines)
Safety also subjective
• Toxicity detection is important, although that has mixed results
• Can mistakenly flag data written in dialects like African American 

English



There are problems with scraping from the web



There are problems with scraping from the web

Copyright: much of the text in these datasets is copyrighted 

• Not clear if fair use doctrine in US allows for this use
• This remains an open legal question across the world
Data consent 

• Website owners can indicate they don't want their site crawled
Privacy:  

• Websites can contain private IP addresses and phone numbers
Skew: 

• Training data is disproportionately generated by authors from the 
US which probably skews resulting topics and opinions



Fine-tuning



Finetuning for adaptation to new domains

• What happens if we need our LLM to work well on a 
domain it didn't see in pretraining?

• Perhaps some specific medical or legal domain?
• Or maybe a multilingual LM needs to see more data on 

some language that was rare in pretraining?
• Therefore, produce a specialized model by “fine tuning”

• Unsupervised (continued pretraining)
• Supervised (on annotations or correct text output)



Finetuning



Evaluation



Factors that we can evaluate

Perplexity (previous lecture) 

Human preferences (future lectures) 

Size:	Big models take lots of GPUs and time to train, memory to store 

Energy usage: Can measure kWh or kilograms of CO2 emitted  

Fairness: Benchmarks measure gendered and racial stereotypes, or 
decreased performance for language from or about some groups. 



Hallucination



Privacy



Abuse and Toxicity



Lots more

Harm (suggesting dangerous actions)
Fraud 
Emotional dependence
Bias


