
Transformers

CS6120: Natural Language Processing
Northeastern University

David Smith
with slides from John Hewitt, Hung-yi Lee, and Liwei Jiang

Drawbacks of RNNs: Linear Interaction
Distance

Lecture 5: Attention & Transformers2

• RNNs are unrolled left-to-right.
• Linear locality is a useful heuristic: nearby

words often affect each other’s meaning! Steve Jobs

Drawbacks of RNNs: Linear Interaction
Distance

Lecture 5: Attention & Transformers2

• RNNs are unrolled left-to-right.
• Linear locality is a useful heuristic: nearby

words often affect each other’s meaning! Steve Jobs

• However, there’s the vanishing gradient
problem for long sequences.
• The gradients that are used to update the

network become extremely small or
"vanish" as they are backpropogated from
the output layers to the earlier layers.

• Failing to capture long-term dependences.
Steve Jobs Applewho …

O(sequence length)

Drawbacks of RNNs: Linear Interaction
Distance

Lecture 5: Attention & Transformers3

• RNNs are unrolled left-to-right.
• Linear locality is a useful heuristic: nearby

words often affect each other’s meaning! Steve Jobs

Drawbacks of RNNs: Linear Interaction
Distance

Lecture 5: Attention & Transformers3

• RNNs are unrolled left-to-right.
• Linear locality is a useful heuristic: nearby

words often affect each other’s meaning! Steve Jobs

• However, there’s the vanishing gradient
problem for long sequences.
• The gradients that are used to update the

network become extremely small or
"vanish" as they are backpropogated from
the output layers to the earlier layers.

• Failing to capture long-term dependences.
Steve Jobs Applewho …

O(sequence length)

Drawbacks of RNNs: Lack of Parallelizability

Lecture 5: Attention & Transformers4

• Forward and backward passes have O(sequence length) unparallelizable
operations
• GPUs can perform many independent computations (like addition) at once!
• But future RNN hidden states can’t be computed in full before past RNN

hidden states have been computed.
• Training and inference are slow; inhibits on very large datasets!

Numbers indicate min # of steps before a state can be computed

1

0

h1

N

hT

2 3

1 2

h2 h3

Drawbacks of RNNs

Lecture 5: Attention & Transformers5

• Complicated memory and gating structures
• Backprop through time can’t be parallelized
• Is linear order always the most important

structure to model? (No, but people do
incremental interpretation.)

• Instead, let’s learn which parts of the context
to pay attention to

Building the Intuition of Attention

Lecture 5: Attention & Transformers6

• Attention treats each token’s representation as a query to access and incorporate
information from a set of values.
• Today we look at attention within a single sequence.

• Number of unparallelizable operations does NOT increase with sequence length.
• Maximum interaction distance: O(1), since all tokens interact at every layer!

All tokens attend to all tokens
in previous layer; most
arrows here are omitted

0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

h3

attention

attention

embedding

Lecture 4: Pre-training7

Attention Is All You Need (NeurIPS 2017)

Attention as a soft, averaging lookup table

Lecture 5: Attention & Transformers8

We can think of attention as performing fuzzy lookup in a key-value store.

Attention as a soft, averaging lookup table

Lecture 5: Attention & Transformers8

We can think of attention as performing fuzzy lookup in a key-value store.
In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

Attention as a soft, averaging lookup table

Lecture 5: Attention & Transformers8

We can think of attention as performing fuzzy lookup in a key-value store.
In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

In attention, the query matches all keys softly, to
a weight between 0 and 1. The keys’ values are
multiplied by the weights and summed.

Self-Attention: Basic Concepts

Lecture 5: Attention & Transformers9

[Lena Viota Blog]

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Basic Concepts

Lecture 5: Attention & Transformers9

[Lena Viota Blog]

Query: asking for
information

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Basic Concepts

Lecture 5: Attention & Transformers9

[Lena Viota Blog]

Query: asking for
information

Key: saying that it
has some information

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Basic Concepts

Lecture 5: Attention & Transformers9

[Lena Viota Blog]

Query: asking for
information

Key: saying that it
has some information

Value: giving the
information

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Walk-through

Lecture 5: Attention & Transformers10

a1 a2 a3 a4

b1 b2 b3 b4

Can be either input or a hidden layer

Self-Attention Layer

Self-Attention: Walk-through

Lecture 5: Attention & Transformers10

a1 a2 a3 a4

b1 b2 b3 b4

Can be either input or a hidden layer

Self-Attention Layer

Each is obtained by considering bi ∀ai

Self-Attention: Walk-through

Lecture 5: Attention & Transformers11

a1 a2 a3 a4

b1

How relevant are to ?a2, a3, a4 a1

Self-Attention: Walk-through

Lecture 5: Attention & Transformers11

a1 a2 a3 a4

b1

How relevant are to ?a2, a3, a4 a1 We denote the level
of relevance as α

How to compute ?α

Lecture 5: Attention & Transformers12

a1

WQ

a4

WK

q k.

α = q ⋅ k

Method 1 (most common): Dot product Method 2: Additive

a1

WQ

a4

WK

q k

α

tanh

W

+

How to compute ?α

Lecture 5: Attention & Transformers12

a1

WQ

a4

WK

q k.

α = q ⋅ k

Method 1 (most common): Dot product Method 2: Additive

a1

WQ

a4

WK

q k

α

tanh

W

We’ll use this!

+

How to compute ?α

Lecture 5: Attention & Transformers12

a1

WQ

a4

WK

q k.

α = q ⋅ k

Method 1 (most common): Dot product Method 2: Additive

a1

WQ

a4

WK

q k

α

tanh

W

We’ll use this!

+
Cf. encoder-decoder w/

attention, q is the decoder hidden
state and k is the encoder hidden

state.

Self-Attention: Walk-through

Lecture 5: Attention & Transformers13

a1 a2 a3 a4

Self-Attention: Walk-through

Lecture 5: Attention & Transformers13

q1 = WQ a1

q1query

k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3

a1 a2 a3 a4

Self-Attention: Walk-through

Lecture 5: Attention & Transformers13

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

q1query

k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3

a1 a2 a3 a4

Self-Attention: Walk-through

Lecture 5: Attention & Transformers13

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4attention scores

q1 = WQ a1

q1query

k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3

a1 a2 a3 a4

Lecture 5: Attention & Transformers14

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3

a1 a2 a3 a4

α1,1 = q1 ⋅ k1

Lecture 5: Attention & Transformers14

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

α1,1 = q1 ⋅ k1

Lecture 5: Attention & Transformers15

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Softmax

α1,1 = q1 ⋅ k1

Lecture 5: Attention & Transformers15

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Softmax

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

α′￼

1,i =
eα1,i

∑j eα1,j

α1,1 = q1 ⋅ k1

Lecture 5: Attention & Transformers16

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Softmax

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

Denote how relevant each token are to !
Use attention scores to extract information

a1

Lecture 5: Attention & Transformers17

q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

a1 a2 a3 a4

Use attention scores to extract information

Lecture 5: Attention & Transformers17

q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

Lecture 5: Attention & Transformers17

q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1 ×× ××

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

Lecture 5: Attention & Transformers17

q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1 ×× ××

b1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

b1 = ∑
i

α′￼

1,i vi

Lecture 5: Attention & Transformers17

q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1 ×× ××

b1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

b1 = ∑
i

α′￼

1,i vi

Cf. encoder-decoder w/attention, v is just
the encoder hidden state again.

Lecture 5: Attention & Transformers18

q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1 ×× ××

b1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

b1 = ∑
i

α′￼

1,i vi

The higher the attention score is, the
more important is to composing

α′￼

1,i
ai b1

Lecture 5: Attention & Transformers19

q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all to obtain ai bi

a1 a2 a3 a4

Lecture 5: Attention & Transformers19

q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all to obtain ai bi

q3 q4q2

a1 a2 a3 a4

α′￼

2,2 α′￼

2,3α′￼

2,1 α′￼

2,4

Lecture 5: Attention & Transformers19

q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all to obtain ai bi

q3 q4q2

a1 a2 a3 a4

α′￼

2,2 α′￼

2,3×× ×××α′￼

2,1 α′￼

2,4

Lecture 5: Attention & Transformers19

q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all to obtain ai bi

q3 q4q2

a1 a2 a3 a4

α′￼

2,2 α′￼

2,3×× ×××α′￼

2,1 α′￼

2,4

Lecture 5: Attention & Transformers19

q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all to obtain ai bi

b2 = ∑
i

α′￼

2,i vi

q3 q4q2

b2

a1 a2 a3 a4

α′￼

2,2 α′￼

2,3×× ×××α′￼

2,1 α′￼

2,4

Lecture 5: Attention & Transformers20

q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all to obtain ai bi

b2 = ∑
i

α′￼

2,i vi

q3 q4q2

b2

Note that the computation of can be
parallelized, as they are independent of

each other

bi

a1 a2 a3 a4

= WK

Lecture 5: Attention & Transformers21

= WQ = WV

Parallelize the computation!
QKV

= WK

Lecture 5: Attention & Transformers21

= WQ

q1 a1

q2 a2

q3 a3

q4 a4

Q I

= WV

Parallelize the computation!
QKV

= WK

k1 a1

k2 a2

k3 a3

k4 a4

K I

Lecture 5: Attention & Transformers21

= WQ

q1 a1

q2 a2

q3 a3

q4 a4

Q I

= WV

Parallelize the computation!
QKV

= WK

k1 a1

k2 a2

k3 a3

k4 a4

K I

Lecture 5: Attention & Transformers21

= WQ

q1 a1

q2 a2

q3 a3

q4 a4

Q I

= WV

v1 a1

v2 a2

v3 a3

v4 a4

V I

Parallelize the computation!
QKV

Lecture 5: Attention & Transformers22

q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Parallelize the computation!
Attention Scores

Lecture 5: Attention & Transformers22

q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Parallelize the computation!
Attention Scores α1,1

k1

α1,2

k2

α1,3

k3

α1,4

k4=

q1

Lecture 5: Attention & Transformers23

α1,1

k1

α1,2

k2

α1,3

k3

α1,4

k4=

q1

Parallelize the computation!
Attention Scores

Lecture 5: Attention & Transformers24

=

α1,1 α1,2 α1,3 α1,4

k1 k2 k3 k4

q1

Parallelize the computation!
Attention Scores

Lecture 5: Attention & Transformers24

=

α1,1 α1,2 α1,3 α1,4

k1 k2 k3 k4

q1

α2,1 α2,2 α2,3 α2,4 q2

α3,1 α3,2 α3,3 α3,4 q3
α4,1 α4,2 α4,3 α4,4 q4

Parallelize the computation!
Attention Scores

Lecture 5: Attention & Transformers24

=

α1,1 α1,2 α1,3 α1,4α′￼

1,1

α′￼

2,1

α′￼

3,1

α′￼

4,1

α′￼

1,2

α′￼

2,2

α′￼

3,2

α′￼

4,2

α′￼

1,3

α′￼

2,3

α′￼

3,3

α′￼

4,3

α′￼

1,4

α′￼

2,4

α′￼

3,4

α′￼

4,4

k1 k2 k3 k4

q1

α2,1 α2,2 α2,3 α2,4 q2

α3,1 α3,2 α3,3 α3,4 q3
α4,1 α4,2 α4,3 α4,4 q4

Parallelize the computation!
Attention Scores

Lecture 5: Attention & Transformers24

=

α1,1 α1,2 α1,3 α1,4α′￼

1,1

α′￼

2,1

α′￼

3,1

α′￼

4,1

α′￼

1,2

α′￼

2,2

α′￼

3,2

α′￼

4,2

α′￼

1,3

α′￼

2,3

α′￼

3,3

α′￼

4,3

α′￼

1,4

α′￼

2,4

α′￼

3,4

α′￼

4,4

k1 k2 k3 k4

q1

α2,1 α2,2 α2,3 α2,4 q2

α3,1 α3,2 α3,3 α3,4 q3
α4,1 α4,2 α4,3 α4,4 q4

A′￼ A
Q

KT

Parallelize the computation!
Attention Scores

Lecture 5: Attention & Transformers25

Parallelize the computation!
Weighted Sum of Values with Attention Scores

Lecture 5: Attention & Transformers25

=

b1
α′￼

1,1

v1
α′￼

1,2

v2

α′￼

1,3

v3

α′￼

1,4

v4

α′￼

1,1 v1 α′￼

1,2 v2+ α′￼

1,3 v3+ α′￼

1,4 v4+

Parallelize the computation!
Weighted Sum of Values with Attention Scores

Lecture 5: Attention & Transformers26

Parallelize the computation!

α′￼

1,1 α′￼

1,2 α′￼

1,3 α′￼

1,4

=

b1 v1

v2

v3

v4

Parallelize the computation!
Weighted Sum of Values with Attention Scores

Lecture 5: Attention & Transformers26

Parallelize the computation!

α′￼

1,1 α′￼

1,2 α′￼

1,3 α′￼

1,4

=

b1

α′￼

2,1 α′￼

2,2 α′￼

2,3 α′￼

2,4
b2

α′￼

3,1 α′￼

3,2 α′￼

3,3 α′￼

3,4b3

v1

v2

v3

v4
α′￼

4,1 α′￼

4,2 α′￼

4,3 α′￼

4,4b4

A′￼

VO

Parallelize the computation!
Weighted Sum of Values with Attention Scores

Lecture 5: Attention & Transformers27

= WQQ I = WKK I = WVV I

Q KTA′￼ A =Softmax

A′￼= VO

Lecture 5: Attention & Transformers27

= WQQ I = WKK I = WVV I

Q KTA′￼ A =Softmax

A′￼= VO

Q = I WQ

K = I WK

V = I WV

O = A′￼ V

A = I WQ (I WK)T = I WQ WT
K IT

A′￼ = softmax(A)

A = Q KT

Lecture 5: Attention & Transformers28

Q = I WQ

K = I WK

V = I WV

O = A′￼ V

The Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′￼, A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′￼ = softmax(A)

A = Q KT

Dimensions?

?

?

?

Lecture 5: Attention & Transformers28

Q = I WQ

K = I WK

V = I WV

O = A′￼ V

The Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′￼, A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′￼ = softmax(A)

A = Q KT

Dimensions?
?

?

Lecture 5: Attention & Transformers28

Q = I WQ

K = I WK

V = I WV

O = A′￼ V

The Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′￼, A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′￼ = softmax(A)

A = Q KT

Dimensions?

?

Lecture 5: Attention & Transformers28

Q = I WQ

K = I WK

V = I WV

O = A′￼ V

The Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′￼, A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′￼ = softmax(A)

A = Q KT

Dimensions?

Lecture 5: Attention & Transformers29

Q = I WQ

K = I WK

V = I WV

O = A′￼ V

The Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′￼, A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′￼ = softmax(A)

A = Q KT

Dimensions?

Self-Attention: Summary

Lecture 5: Attention & Transformers30

Self-Attention: Summary

Lecture 5: Attention & Transformers30

Let be a sequence of words in vocabulary , like Steve Jobs founded Apple.
For each , let , where is an embedding matrix.

w1:n 𝑉
wi ai = Ewi E ∈ ℝd×|V|

Self-Attention: Summary

Lecture 5: Attention & Transformers30

1. Transform each word embedding with weight matrices , each in WQ, WK, WV ℝd×d

qi = WQ ai (queries) ki = WK ai (keys) vi = WV ai (values)

Let be a sequence of words in vocabulary , like Steve Jobs founded Apple.
For each , let , where is an embedding matrix.

w1:n 𝑉
wi ai = Ewi E ∈ ℝd×|V|

Self-Attention: Summary

Lecture 5: Attention & Transformers30

1. Transform each word embedding with weight matrices , each in WQ, WK, WV ℝd×d

qi = WQ ai (queries) ki = WK ai (keys) vi = WV ai (values)

Let be a sequence of words in vocabulary , like Steve Jobs founded Apple.
For each , let , where is an embedding matrix.

w1:n 𝑉
wi ai = Ewi E ∈ ℝd×|V|

2. Compute pairwise similarities between keys and queries; normalize with softmax

α′￼

i,j =
eαi,j

∑j eαi,jαi,j = kj qi

Self-Attention: Summary

Lecture 5: Attention & Transformers30

1. Transform each word embedding with weight matrices , each in WQ, WK, WV ℝd×d

qi = WQ ai (queries) ki = WK ai (keys) vi = WV ai (values)

Let be a sequence of words in vocabulary , like Steve Jobs founded Apple.
For each , let , where is an embedding matrix.

w1:n 𝑉
wi ai = Ewi E ∈ ℝd×|V|

2. Compute pairwise similarities between keys and queries; normalize with softmax

α′￼

i,j =
eαi,j

∑j eαi,jαi,j = kj qi

3. Compute output for each word as weighted sum of values

bi = ∑
j

α′￼

i,j vj

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers31

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers31

No Sequence Order

No Nonlinearities

Looking into the Future

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers31

No Sequence Order

No Nonlinearities

Looking into the Future

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers31

No Sequence Order

No Nonlinearities

Looking into the Future

Position Embedding

Adding Feed-forward Networks

Masking

No Sequence Order Position Embedding→

Lecture 5: Attention & Transformers32

• All tokens in an input sequence are simultaneously fed into self-
attention blocks. Thus, there’s no difference between tokens at different
positions.

• We lose the position info!

No Sequence Order Position Embedding→

Lecture 5: Attention & Transformers32

• All tokens in an input sequence are simultaneously fed into self-
attention blocks. Thus, there’s no difference between tokens at different
positions.

• We lose the position info!
• How do we bring the position info back, just like in RNNs?

• Representing each sequence index as a vector: ,
for

pi ∈ ℝd

i ∈ {1,...,n}

No Sequence Order Position Embedding→

Lecture 5: Attention & Transformers32

• How to incorporate the position info into the self-attention blocks?

• Just add the to the input:

• where is the embedding of the word at index .

• In deep self-attention networks, we do this at the first layer.

• We can also concatenate and , but more commonly we add them.

pi ̂ai = ai + pi

ai i

ai pi

• All tokens in an input sequence are simultaneously fed into self-
attention blocks. Thus, there’s no difference between tokens at different
positions.

• We lose the position info!
• How do we bring the position info back, just like in RNNs?

• Representing each sequence index as a vector: ,
for

pi ∈ ℝd

i ∈ {1,...,n}
qi ki vi

aipi +

Position Representation Vectors via
Sinusoids

Lecture 5: Attention & Transformers33

Sinusoidal Position Representations (from the original Transformer
paper): concatenate sinusoidal functions of varying periods.

Position Representation Vectors via
Sinusoids

Lecture 5: Attention & Transformers33

Sinusoidal Position Representations (from the original Transformer
paper): concatenate sinusoidal functions of varying periods.

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗ 𝑑
2 /𝑑)

cos(𝑖/100002∗ 𝑑
2 /𝑑) Index in the sequence

Di
m

en
sio

n
https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Position Representation Vectors via
Sinusoids

Lecture 5: Attention & Transformers33

Sinusoidal Position Representations (from the original Transformer
paper): concatenate sinusoidal functions of varying periods.

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗ 𝑑
2 /𝑑)

cos(𝑖/100002∗ 𝑑
2 /𝑑)

• Periodicity indicates that maybe “absolute position” isn’t as important
• Maybe can extrapolate to longer sequences as periods restart!

Index in the sequence

Di
m

en
sio

n
https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Position Representation Vectors via
Sinusoids

Lecture 5: Attention & Transformers33

Sinusoidal Position Representations (from the original Transformer
paper): concatenate sinusoidal functions of varying periods.

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗ 𝑑
2 /𝑑)

cos(𝑖/100002∗ 𝑑
2 /𝑑)

• Periodicity indicates that maybe “absolute position” isn’t as important
• Maybe can extrapolate to longer sequences as periods restart!

• Not learnable; also the extrapolation doesn’t really work!

Index in the sequence

Di
m

en
sio

n
https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Lecture 5: Attention & Transformers34

Learnable Position Representation Vectors
Learned absolute position representations: contains learnable parameters.

• Learn a matrix , and let each be a column of that matrix
• Most systems use this method.

pi
p ∈ ℝd×n pi

Lecture 5: Attention & Transformers34

Learnable Position Representation Vectors

• Flexibility: each position gets to be learned to fit the data

Learned absolute position representations: contains learnable parameters.

• Learn a matrix , and let each be a column of that matrix
• Most systems use this method.

pi
p ∈ ℝd×n pi

Lecture 5: Attention & Transformers34

Learnable Position Representation Vectors

• Flexibility: each position gets to be learned to fit the data

• Cannot extrapolate to indices outside .1,...,n

Learned absolute position representations: contains learnable parameters.

• Learn a matrix , and let each be a column of that matrix
• Most systems use this method.

pi
p ∈ ℝd×n pi

Lecture 5: Attention & Transformers34

Learnable Position Representation Vectors

• Flexibility: each position gets to be learned to fit the data

• Cannot extrapolate to indices outside .1,...,n

Learned absolute position representations: contains learnable parameters.

• Learn a matrix , and let each be a column of that matrix
• Most systems use this method.

pi
p ∈ ℝd×n pi

Sometimes people try more flexible representations of position:
• Relative linear position attention [Shaw et al., 2018]
• Dependency syntax-based position [Wang et al., 2019]

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers35

No Sequence Order Position Embedding

No Nonlinearities Adding Feed-forward Networks

Looking into the Future Masking

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers35

No Sequence Order Position Embedding

No Nonlinearities Adding Feed-forward Networks

Looking into the Future Masking

No Nonlinearities Add Feed-forward
Networks

→

Lecture 5: Attention & Transformers36

There are no element-wise
nonlinearities in self-attention; stacking
more self-attention layers just re-
averages value vectors.

No Nonlinearities Add Feed-forward
Networks

→

Lecture 5: Attention & Transformers36

There are no element-wise
nonlinearities in self-attention; stacking
more self-attention layers just re-
averages value vectors.

Easy Fix: add a feed-forward network to
post-process each output vector.

a1 a2 an

b1

Self-Attention

…

FF FF FF…

b2 bn

Self-Attention

c1

FF FF FF…

c2 cn

…

…

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers37

No Sequence Order Position Embedding

No Nonlinearities Adding Feed-forward Networks

Looking into the Future Masking

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers37

No Sequence Order Position Embedding

No Nonlinearities Adding Feed-forward Networks

Looking into the Future Masking

Lecture 5: Attention & Transformers38

Looking into the Future Masking→

Lecture 5: Attention & Transformers38

Looking into the Future Masking→
• In decoders (language modeling,

producing the next word given
previous context), we need to
ensure we don’t peek at the
future.

Lecture 5: Attention & Transformers38

Looking into the Future Masking→
• In decoders (language modeling,

producing the next word given
previous context), we need to
ensure we don’t peek at the
future.

• At every time-step, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

Lecture 5: Attention & Transformers38

Looking into the Future Masking→

• To enable parallelization, we
mask out attention to future
words by setting attention scores
to .−∞

• In decoders (language modeling,
producing the next word given
previous context), we need to
ensure we don’t peek at the
future.

• At every time-step, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

Lecture 5: Attention & Transformers38

Looking into the Future Masking→

• To enable parallelization, we
mask out attention to future
words by setting attention scores
to .−∞

αi,j = {qi kj, j ≤ i
−∞, j > i

The

chef

who

[START]

For encoding
these words

The chef
who

[START]

We can look at these (not
greyed out) words

−∞

−∞−∞

−∞−∞ −∞

• In decoders (language modeling,
producing the next word given
previous context), we need to
ensure we don’t peek at the
future.

• At every time-step, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

Now We Put Things Together

Lecture 5: Attention & Transformers39

• Self-attention
• The basic computation

• Positional Encoding
• Specify the sequence order

• Nonlinearities
• Adding a feed-forward network at the

output of the self-attention block
• Masking

• Parallelize operations (looking at all
tokens) while not leaking info from the

Now We Put Things Together

Lecture 5: Attention & Transformers39

• Self-attention
• The basic computation

• Positional Encoding
• Specify the sequence order

• Nonlinearities
• Adding a feed-forward network at the

output of the self-attention block
• Masking

• Parallelize operations (looking at all
tokens) while not leaking info from the

Inputs

+

Input Embeddings

Position Embedding

Now We Put Things Together

Lecture 5: Attention & Transformers39

• Self-attention
• The basic computation

• Positional Encoding
• Specify the sequence order

• Nonlinearities
• Adding a feed-forward network at the

output of the self-attention block
• Masking

• Parallelize operations (looking at all
tokens) while not leaking info from the

Inputs

+

Input Embeddings

Position Embedding

Feed-Forward

Masked Self-Attention

Now We Put Things Together

Lecture 5: Attention & Transformers39

• Self-attention
• The basic computation

• Positional Encoding
• Specify the sequence order

• Nonlinearities
• Adding a feed-forward network at the

output of the self-attention block
• Masking

• Parallelize operations (looking at all
tokens) while not leaking info from the

Inputs

+

Input Embeddings

Position Embedding

Feed-Forward

Masked Self-Attention

Now We Put Things Together

Lecture 5: Attention & Transformers39

• Self-attention
• The basic computation

• Positional Encoding
• Specify the sequence order

• Nonlinearities
• Adding a feed-forward network at the

output of the self-attention block
• Masking

• Parallelize operations (looking at all
tokens) while not leaking info from the

Inputs

+

Output
Probabilities

Input Embeddings

Position Embedding

Feed-Forward

Masked Self-Attention

Linear

Softmax

Now We Put Things Together

Lecture 5: Attention & Transformers39

• Self-attention
• The basic computation

• Positional Encoding
• Specify the sequence order

• Nonlinearities
• Adding a feed-forward network at the

output of the self-attention block
• Masking

• Parallelize operations (looking at all
tokens) while not leaking info from the

Inputs

+

Output
Probabilities

Input Embeddings

Position Embedding

Feed-Forward

Masked Self-Attention

Linear

Softmax

BlockRe
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

The Transformer Decoder

Lecture 5: Attention & Transformers40

The Transformer Decoder

Lecture 5: Attention & Transformers40

• A Transformer decoder is what we
use to build systems like language
models.

The Transformer Decoder

Lecture 5: Attention & Transformers40

• A Transformer decoder is what we
use to build systems like language
models.

• It’s a lot like our minimal self-attention
architecture, but with a few more
components.
• Residual connection (“Add”)
• Layer normalization (“Norm")

The Transformer Decoder

Lecture 5: Attention & Transformers40

• Replace self-attention with multi-
head self-attention.

• A Transformer decoder is what we
use to build systems like language
models.

• It’s a lot like our minimal self-attention
architecture, but with a few more
components.
• Residual connection (“Add”)
• Layer normalization (“Norm")

The Transformer Decoder

Lecture 5: Attention & Transformers40

• Replace self-attention with multi-
head self-attention.

• A Transformer decoder is what we
use to build systems like language
models.

• It’s a lot like our minimal self-attention
architecture, but with a few more
components.
• Residual connection (“Add”)
• Layer normalization (“Norm")

Inputs

Input Embeddings

Position Embedding+

The Transformer Decoder

Lecture 5: Attention & Transformers40

• Replace self-attention with multi-
head self-attention.

• A Transformer decoder is what we
use to build systems like language
models.

• It’s a lot like our minimal self-attention
architecture, but with a few more
components.
• Residual connection (“Add”)
• Layer normalization (“Norm")

Inputs

Input Embeddings

Position Embedding

Masked Multi-head
Attention

Feed-Forward

+

The Transformer Decoder

Lecture 5: Attention & Transformers40

• Replace self-attention with multi-
head self-attention.

• A Transformer decoder is what we
use to build systems like language
models.

• It’s a lot like our minimal self-attention
architecture, but with a few more
components.
• Residual connection (“Add”)
• Layer normalization (“Norm")

Inputs

Input Embeddings

Position Embedding

Masked Multi-head
Attention

Feed-Forward

Add & Norm

Add & Norm

+

The Transformer Decoder

Lecture 5: Attention & Transformers40

• Replace self-attention with multi-
head self-attention.

• A Transformer decoder is what we
use to build systems like language
models.

• It’s a lot like our minimal self-attention
architecture, but with a few more
components.
• Residual connection (“Add”)
• Layer normalization (“Norm")

Inputs

Input Embeddings

Position Embedding

Masked Multi-head
Attention

Feed-Forward

Add & Norm

Add & Norm

+

The Transformer Decoder

Lecture 5: Attention & Transformers40

• Replace self-attention with multi-
head self-attention.

• A Transformer decoder is what we
use to build systems like language
models.

• It’s a lot like our minimal self-attention
architecture, but with a few more
components.
• Residual connection (“Add”)
• Layer normalization (“Norm")

Inputs

Input Embeddings

Position Embedding

Masked Multi-head
Attention

Feed-Forward

Add & Norm

Add & Norm

+

The Transformer Decoder

Lecture 5: Attention & Transformers40

• Replace self-attention with multi-
head self-attention.

• A Transformer decoder is what we
use to build systems like language
models.

• It’s a lot like our minimal self-attention
architecture, but with a few more
components.
• Residual connection (“Add”)
• Layer normalization (“Norm")

Inputs

Input Embeddings

Position Embedding

Output Probabilities

Masked Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

+

The Transformer Decoder

Lecture 5: Attention & Transformers40

• Replace self-attention with multi-
head self-attention.

• A Transformer decoder is what we
use to build systems like language
models.

• It’s a lot like our minimal self-attention
architecture, but with a few more
components.
• Residual connection (“Add”)
• Layer normalization (“Norm")

Inputs

Input Embeddings

Position Embedding

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

Output Probabilities

Masked Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

+

Why Multi-head Attention?

Lecture 5: Attention & Transformers41

What if we want to look in
multiple places in the
sentence at once?

?

Why Multi-head Attention?

Lecture 5: Attention & Transformers41

What if we want to look in
multiple places in the
sentence at once?

?
Instead of having only one

attention head, we can create
multiple sets of (queries, keys,

values) independent from each
other!

Lecture 5: Attention & Transformers42

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Multi-Head Attention: Walk-through

Lecture 5: Attention & Transformers42

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Multi-Head Attention: Walk-through

Lecture 5: Attention & Transformers42

α′￼

i,i,1 α′￼

i,j,1

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Multi-Head Attention: Walk-through

Lecture 5: Attention & Transformers42

α′￼

i,i,1 α′￼

i,j,1× ×

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Multi-Head Attention: Walk-through

Lecture 5: Attention & Transformers42

α′￼

i,i,1 α′￼

i,j,1

bi,1

× ×

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Multi-Head Attention: Walk-through

Lecture 5: Attention & Transformers43

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Lecture 5: Attention & Transformers43

α′￼

i,i,2 α′￼

i,j,2

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Lecture 5: Attention & Transformers43

α′￼

i,i,2 α′￼

i,j,2 ××

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Lecture 5: Attention & Transformers43

α′￼

i,i,2 α′￼

i,j,2

bi,2

××

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

× ×

Lecture 5: Attention & Transformers44

××

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

aj

bi,2

bi,1

Multi-head Attention

× ×

Lecture 5: Attention & Transformers44

××

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

aj

bi,2

bi,1
Y=bi

Multi-head Attention

× ×

Lecture 5: Attention & Transformers44

××

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

aj

bi,2

bi,1
Y=bi

Multi-head Attention

Concatenation

× ×

Lecture 5: Attention & Transformers44

××

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

aj

bi,2

bi,1
Y=bi

Multi-head Attention

Some
transformation

Concatenation

Lecture 5: Attention & Transformers45

Q = I WQ

K = I WK

V = I WV

O = A′￼ V

Recall the Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′￼, A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′￼ = softmax(A)

A = Q KT

Multi-head Attention in Matrices

Lecture 5: Attention & Transformers46

• Multiple attention “heads” can be defined via multiple matrices

• Let , where is the number of attention heads, and
ranges from 1 to .

• Each attention head performs attention independently:

•

• Concatenating different from different attention heads.

• , where

WQ, WK, WV

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h h l
h

Ol = softmax(I Wl
Q Wl

K
T IT) I Wl

V

Ol

O = [O1; . . . ; On] Y Y ∈ ℝd×d

Lecture 5: Attention & Transformers47

Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′￼ Vl

The Matrices Form of Multi-head Attention

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′￼, Al ∈ ℝn×n

Al′￼ = softmax(Al)

Al = Ql KlT

Dimensions?

?

?

?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d?
?

Lecture 5: Attention & Transformers47

Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′￼ Vl

The Matrices Form of Multi-head Attention

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′￼, Al ∈ ℝn×n

Al′￼ = softmax(Al)

Al = Ql KlT

Dimensions?

?

?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d?
?

Lecture 5: Attention & Transformers47

Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′￼ Vl

The Matrices Form of Multi-head Attention

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′￼, Al ∈ ℝn×n

Al′￼ = softmax(Al)

Al = Ql KlT

Dimensions?
?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d?
?

Lecture 5: Attention & Transformers47

Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′￼ Vl

The Matrices Form of Multi-head Attention

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′￼, Al ∈ ℝn×n

Al′￼ = softmax(Al)

Al = Ql KlT

Dimensions?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d?
?

Lecture 5: Attention & Transformers47

Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′￼ Vl

The Matrices Form of Multi-head Attention

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′￼, Al ∈ ℝn×n

Al′￼ = softmax(Al)

Al = Ql KlT

Dimensions?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d

?

Lecture 5: Attention & Transformers47

Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′￼ Vl

The Matrices Form of Multi-head Attention

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′￼, Al ∈ ℝn×n

Al′￼ = softmax(Al)

Al = Ql KlT

Dimensions?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d

Lecture 5: Attention & Transformers48

Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′￼ Vl

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′￼, Al ∈ ℝn×n

Al′￼ = softmax(Al)

Al = Ql KlT

Dimensions?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d

The Matrices Form of Multi-head Attention

Multi-head Attention is Computationally Efficient

Lecture 5: Attention & Transformers49

• Even though we compute many attention heads, it’s not more costly.

• We compute , and then reshape to .

• Likewise for and .

• Then we transpose to ; now the head axis is like a batch axis.
• Almost everything else is identical. All we need to do is to reshape the

tensors!

h
I WQ ∈ ℝn×d ℝn×h× d

h

I WK I WV

ℝh×n× d
h

Multi-head Attention is Computationally Efficient

Lecture 5: Attention & Transformers49

• Even though we compute many attention heads, it’s not more costly.

• We compute , and then reshape to .

• Likewise for and .

• Then we transpose to ; now the head axis is like a batch axis.
• Almost everything else is identical. All we need to do is to reshape the

tensors!

h
I WQ ∈ ℝn×d ℝn×h× d

h

I WK I WV

ℝh×n× d
h

∈ ℝh×n×n
I WQ WT

K IT I WQ WT
K IT

=

Multi-head Attention is Computationally Efficient

Lecture 5: Attention & Transformers49

• Even though we compute many attention heads, it’s not more costly.

• We compute , and then reshape to .

• Likewise for and .

• Then we transpose to ; now the head axis is like a batch axis.
• Almost everything else is identical. All we need to do is to reshape the

tensors!

h
I WQ ∈ ℝn×d ℝn×h× d

h

I WK I WV

ℝh×n× d
h

 sets of attention scores!h

∈ ℝh×n×n
I WQ WT

K IT I WQ WT
K IT

=

Multi-head Attention is Computationally Efficient

Lecture 5: Attention & Transformers49

• Even though we compute many attention heads, it’s not more costly.

• We compute , and then reshape to .

• Likewise for and .

• Then we transpose to ; now the head axis is like a batch axis.
• Almost everything else is identical. All we need to do is to reshape the

tensors!

h
I WQ ∈ ℝn×d ℝn×h× d

h

I WK I WV

ℝh×n× d
h

 sets of attention scores!h

∈ ℝh×n×n
I WQ WT

K IT I WQ WT
K IT

=

I WQ WT
K ITSoftmax() I WV

Multi-head Attention is Computationally Efficient

Lecture 5: Attention & Transformers49

• Even though we compute many attention heads, it’s not more costly.

• We compute , and then reshape to .

• Likewise for and .

• Then we transpose to ; now the head axis is like a batch axis.
• Almost everything else is identical. All we need to do is to reshape the

tensors!

h
I WQ ∈ ℝn×d ℝn×h× d

h

I WK I WV

ℝh×n× d
h

 sets of attention scores!h

∈ ℝh×n×n
I WQ WT

K IT I WQ WT
K IT

=

I WQ WT
K ITSoftmax() I WV = O′￼

Multi-head Attention is Computationally Efficient

Lecture 5: Attention & Transformers49

• Even though we compute many attention heads, it’s not more costly.

• We compute , and then reshape to .

• Likewise for and .

• Then we transpose to ; now the head axis is like a batch axis.
• Almost everything else is identical. All we need to do is to reshape the

tensors!

h
I WQ ∈ ℝn×d ℝn×h× d

h

I WK I WV

ℝh×n× d
h

 sets of attention scores!h

∈ ℝh×n×n
I WQ WT

K IT I WQ WT
K IT

=

I WQ WT
K ITSoftmax() I WV = O′￼ =Y O ∈ ℝn×d

Scaled Dot Product [Vaswani et al., 2017]

Lecture 5: Attention & Transformers50

• “Scaled Dot Product” attention aids in training.

• When dimensionality becomes large, dot products between vectors tend to
become large.
• Because of this, inputs to the softmax function can be large, making the gradients

small.

d

Scaled Dot Product [Vaswani et al., 2017]

Lecture 5: Attention & Transformers50

• “Scaled Dot Product” attention aids in training.

• When dimensionality becomes large, dot products between vectors tend to
become large.
• Because of this, inputs to the softmax function can be large, making the gradients

small.

d

• Instead of the self-attention function
we’ve seen:

•

• We divide the attention scores by , to
stop the scores from becoming large just as a
function of (the dimensionality divided by the
number of heads).

Ol = softmax(I Wl
Q Wl

K
T IT) I Wl

V

d/h

d/h

Scaled Dot Product [Vaswani et al., 2017]

Lecture 5: Attention & Transformers50

• “Scaled Dot Product” attention aids in training.

• When dimensionality becomes large, dot products between vectors tend to
become large.
• Because of this, inputs to the softmax function can be large, making the gradients

small.

d

• Instead of the self-attention function
we’ve seen:

•

• We divide the attention scores by , to
stop the scores from becoming large just as a
function of (the dimensionality divided by the
number of heads).

Ol = softmax(I Wl
Q Wl

K
T IT) I Wl

V

d/h

d/h

Ol = softmax(
I Wl

Q Wl
K

T IT

d/h
) I Wl

V

The Transformer Decoder

Lecture 5: Attention & Transformers51

Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

Output Probabilities

Masked Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

The Transformer Decoder

Lecture 5: Attention & Transformers51

Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

• Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two
optimization tricks:
• Residual connection (“Add”)
• Layer normalization (“Norm”)

Output Probabilities

Masked Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

Residual Connections

Lecture 5: Attention & Transformers52

[He et al., 2016]

https://arxiv.org/abs/1512.03385

• Residual connections are a trick to help models train better.

Residual Connections

Lecture 5: Attention & Transformers52

[He et al., 2016]

https://arxiv.org/abs/1512.03385

• Residual connections are a trick to help models train better.

• Instead of (where represents the layer)X(i) = Layer(X(i−1)) i

Residual Connections

Lecture 5: Attention & Transformers52

[He et al., 2016]

https://arxiv.org/abs/1512.03385

• Residual connections are a trick to help models train better.

• Instead of (where represents the layer)X(i) = Layer(X(i−1)) i

Residual Connections

Lecture 5: Attention & Transformers52

[He et al., 2016]

X(i−1) Layer X(i)

https://arxiv.org/abs/1512.03385

• Residual connections are a trick to help models train better.

• Instead of (where represents the layer)X(i) = Layer(X(i−1)) i

• We let (so we only have to learn “the residual”
from the previous layer)

X(i) = X(i−1) + Layer(X(i−1))

Residual Connections

Lecture 5: Attention & Transformers52

[He et al., 2016]

X(i−1) Layer X(i)

https://arxiv.org/abs/1512.03385

• Residual connections are a trick to help models train better.

• Instead of (where represents the layer)X(i) = Layer(X(i−1)) i

• We let (so we only have to learn “the residual”
from the previous layer)

X(i) = X(i−1) + Layer(X(i−1))

Residual Connections

Lecture 5: Attention & Transformers52

[He et al., 2016]

X(i−1) Layer X(i)

X(i−1) Layer X(i)+

https://arxiv.org/abs/1512.03385

• Residual connections are a trick to help models train better.

• Instead of (where represents the layer)X(i) = Layer(X(i−1)) i

• We let (so we only have to learn “the residual”
from the previous layer)

X(i) = X(i−1) + Layer(X(i−1))

• Gradient is great through the residual
connection; it’s 1!

Residual Connections

Lecture 5: Attention & Transformers52

[He et al., 2016]

X(i−1) Layer X(i)

X(i−1) Layer X(i)+

https://arxiv.org/abs/1512.03385

• Residual connections are a trick to help models train better.

• Instead of (where represents the layer)X(i) = Layer(X(i−1)) i

• We let (so we only have to learn “the residual”
from the previous layer)

X(i) = X(i−1) + Layer(X(i−1))

• Gradient is great through the residual
connection; it’s 1!

• Bias towards the identity function!

Residual Connections

Lecture 5: Attention & Transformers52

[He et al., 2016]

X(i−1) Layer X(i)

X(i−1) Layer X(i)+

https://arxiv.org/abs/1512.03385

• Residual connections are a trick to help models train better.

• Instead of (where represents the layer)X(i) = Layer(X(i−1)) i

• We let (so we only have to learn “the residual”
from the previous layer)

X(i) = X(i−1) + Layer(X(i−1))

• Gradient is great through the residual
connection; it’s 1!

• Bias towards the identity function!

Residual Connections

Lecture 5: Attention & Transformers52

[He et al., 2016]

X(i−1) Layer X(i)

X(i−1) Layer X(i)+

[no residuals] [residuals]

[Loss landscape visualization,
Li et al., 2018, on a ResNet]

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf

Layer Normalization

Lecture 5: Attention & Transformers53

[Ba et al., 2016]

https://arxiv.org/abs/1607.06450

Layer Normalization

Lecture 5: Attention & Transformers53

• Layer normalization is a trick to help models train faster.

[Ba et al., 2016]

https://arxiv.org/abs/1607.06450

Layer Normalization

Lecture 5: Attention & Transformers53

• Layer normalization is a trick to help models train faster.
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit

mean and standard deviation within each layer.
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

[Ba et al., 2016]

https://arxiv.org/abs/1607.06450

Layer Normalization

Lecture 5: Attention & Transformers53

• Layer normalization is a trick to help models train faster.
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit

mean and standard deviation within each layer.
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let be an individual (word) vector in the model.𝑥 ∈ ℝ𝑑

[Ba et al., 2016]

https://arxiv.org/abs/1607.06450

Layer Normalization

Lecture 5: Attention & Transformers53

• Layer normalization is a trick to help models train faster.
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit

mean and standard deviation within each layer.
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let be an individual (word) vector in the model.𝑥 ∈ ℝ𝑑

• Let ; this is the mean; .𝜇 =
𝑑

∑
𝑗=1

𝑥𝑗 𝜇 ∈ ℝ

[Ba et al., 2016]

https://arxiv.org/abs/1607.06450

Layer Normalization

Lecture 5: Attention & Transformers53

• Layer normalization is a trick to help models train faster.
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit

mean and standard deviation within each layer.
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let be an individual (word) vector in the model.𝑥 ∈ ℝ𝑑

• Let ; this is the mean; .𝜇 =
𝑑

∑
𝑗=1

𝑥𝑗 𝜇 ∈ ℝ

• Let ; this is the standard deviation; .𝜎 =
1
𝑑

𝑑

∑
𝑗=1

(𝑥𝑗 − 𝜇)
2

𝜎 ∈ ℝ

[Ba et al., 2016]

https://arxiv.org/abs/1607.06450

Layer Normalization

Lecture 5: Attention & Transformers53

• Layer normalization is a trick to help models train faster.
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit

mean and standard deviation within each layer.
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let be an individual (word) vector in the model.𝑥 ∈ ℝ𝑑

• Let ; this is the mean; .𝜇 =
𝑑

∑
𝑗=1

𝑥𝑗 𝜇 ∈ ℝ

• Let ; this is the standard deviation; .𝜎 =
1
𝑑

𝑑

∑
𝑗=1

(𝑥𝑗 − 𝜇)
2

𝜎 ∈ ℝ

• Let and be learned “gain” and “bias” parameters. (Can omit!)𝛾 ∈ ℝ𝑑 𝛽 ∈ ℝ𝑑

[Ba et al., 2016]

https://arxiv.org/abs/1607.06450

Layer Normalization

Lecture 5: Attention & Transformers53

• Layer normalization is a trick to help models train faster.
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit

mean and standard deviation within each layer.
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let be an individual (word) vector in the model.𝑥 ∈ ℝ𝑑

• Let ; this is the mean; .𝜇 =
𝑑

∑
𝑗=1

𝑥𝑗 𝜇 ∈ ℝ

• Let ; this is the standard deviation; .𝜎 =
1
𝑑

𝑑

∑
𝑗=1

(𝑥𝑗 − 𝜇)
2

𝜎 ∈ ℝ

• Let and be learned “gain” and “bias” parameters. (Can omit!)𝛾 ∈ ℝ𝑑 𝛽 ∈ ℝ𝑑

• Then layer normalization computes:

• output =
𝑥 − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽

[Ba et al., 2016]

https://arxiv.org/abs/1607.06450

Layer Normalization

Lecture 5: Attention & Transformers53

• Layer normalization is a trick to help models train faster.
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit

mean and standard deviation within each layer.
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let be an individual (word) vector in the model.𝑥 ∈ ℝ𝑑

• Let ; this is the mean; .𝜇 =
𝑑

∑
𝑗=1

𝑥𝑗 𝜇 ∈ ℝ

• Let ; this is the standard deviation; .𝜎 =
1
𝑑

𝑑

∑
𝑗=1

(𝑥𝑗 − 𝜇)
2

𝜎 ∈ ℝ

• Let and be learned “gain” and “bias” parameters. (Can omit!)𝛾 ∈ ℝ𝑑 𝛽 ∈ ℝ𝑑

• Then layer normalization computes:

• output =
𝑥 − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽

[Ba et al., 2016]

Normalize by
scalar mean and
variance

Modulate by learned
element-wise gain and
bias

https://arxiv.org/abs/1607.06450

The Transformer Decoder

Lecture 5: Attention & Transformers54

Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

Output Probabilities

Masked Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

The Transformer Decoder

Lecture 5: Attention & Transformers54

Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s• The Transformer Decoder is a stack
of Transformer Decoder Blocks.

• Each Block consists of:
• Masked Multi-head Self-attention
• Add & Norm
• Feed-Forward
• Add & Norm

Output Probabilities

Masked Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

The Transformer Encoder

Lecture 5: Attention & Transformers55

Encoder Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

Output Probabilities

Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

The Transformer Encoder

Lecture 5: Attention & Transformers55

Encoder Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

• The Transformer Decoder
constrains to unidirectional
context, as for language
models.

• What if we want bidirectional
context, like in a bidirectional
RNN?

• We use Transformer Encoder
— the ONLY difference is that
we remove the masking in
self-attention.

Output Probabilities

Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

The Transformer Encoder

Lecture 5: Attention & Transformers55

Encoder Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

• The Transformer Decoder
constrains to unidirectional
context, as for language
models.

• What if we want bidirectional
context, like in a bidirectional
RNN?

• We use Transformer Encoder
— the ONLY difference is that
we remove the masking in
self-attention.

Output Probabilities

Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

No masks!

The Transformer Encoder-Decoder

Lecture 5: Attention & Transformers56

w1, . . . , wt1

wt1+1, . . . , wt2

wt1+2, . . .

The Transformer Encoder-Decoder

Lecture 5: Attention & Transformers56

• More on Encoder-Decoder models will be
introduced in future lectures!

• Right now we only need to know that it processes
the source sentence with a bidirectional model
(Encoder) and generates the target with a
unidirectional model (Decoder).

• The Transformer Decoder is modified to perform
cross-attention to the output of the Encoder. w1, . . . , wt1

wt1+1, . . . , wt2

wt1+2, . . .

++

Lecture 5: Attention & Transformers57

Encoder Inputs

Input Embeddings

Position Embedding

Block

Decoder Inputs

Input Embeddings

Position Embedding

Block

Masked Multi-head
Attention

Add & Norm

Add & Norm

Masked Multi-head
Attention

Multi-head
Attention

Feed-Forward

Add & Norm

Add & Norm

Add & Norm

Feed-Forward

Output Probabilities

Linear

Softmax

Cross-Attention

K V Q

Lecture 5: Attention & Transformers58

Cross-Attention Details

Lecture 5: Attention & Transformers58

Cross-Attention Details
• Self-attention: queries, keys, and values come from the same source.
• Cross-Attention: keys and values are from Encoder (like a memory);

queries are from Decoder.
• Let be output vectors from the Transformer encoder, .

• Let be input vectors from the Transformer decoder, .
• Keys and values from the encoder:

•
•

• Queries are drawn from the decoder:

•

h1, …, h𝑛 hi ∈ ℝd

𝑧1, …, 𝑧𝑛 zi ∈ ℝd

ki = WK hi
vi = WV hi

qi = WQ zi

Lecture 5: Attention & Transformers59

The Revolutionary Impact of Transformers

• Since Transformer has been popularized in
language applications, computer vision
also adapted Transformers, e.g., Vision
Transformers.

[Khan et al., 2021]

• Almost all current-day leading language models use Transformer building blocks.

• E.g., GPT1/2/3/4, T5, Llama 1/2, BERT, … almost anything we can name

• Transformer-based models dominate nearly all NLP leaderboards.

https://arxiv.org/pdf/2101.01169.pdf

Lecture 5: Attention & Transformers59

The Revolutionary Impact of Transformers

• Since Transformer has been popularized in
language applications, computer vision
also adapted Transformers, e.g., Vision
Transformers.

[Khan et al., 2021]

• Almost all current-day leading language models use Transformer building blocks.

• E.g., GPT1/2/3/4, T5, Llama 1/2, BERT, … almost anything we can name

• Transformer-based models dominate nearly all NLP leaderboards.

What’s next after
Transformers?

https://arxiv.org/pdf/2101.01169.pdf

