Transformers

CS6120: Natural Language Processing
Northeastern University

David Smith
with slides from John Hewitt, Hung-yi Lee, and Liwei Jiang

Drawbacks of RNNs: Linear Interaction
Distance

* RNN:s are unrolled left-to-right.

* Linear locality is a useful heuristic: nearby -_.-

: .
words often affect each other’s meaning! Steve Jobs

Drawbacks of RNNs: Linear Interaction

Distance
* RNN:s are unrolled left-to-right. . .
* Linear locality is a useful heuristic: nearby - .-

words often affect each other’s meaning!

Steve Jobs

e However, there’s the vanishing gradient
problem for long sequences.

¢ The gradients that are used to update the
network become extremely small or
"vanish" as they are backpropogated from
the output layers to the earlier layers.

O(sequence length)
A

1

|
.<—>.<—>.<—> 00 A —)) 00 — I
1] t]
.4— < «—> Q000 —p —p 000 —>

Steve Jobs who ... Apple

O Failing to capture long-term dependences.

Drawbacks of RNNs: Linear Interaction
Distance

* RNN:s are unrolled left-to-right.

* Linear locality is a useful heuristic: nearby -_.-

: .
words often affect each other’s meaning! Steve Jobs

Drawbacks of RNNs: Linear Interaction

Distance
* RNN:s are unrolled left-to-right. . .
* Linear locality is a useful heuristic: nearby - .-

words often affect each other’s meaning!

Steve Jobs

e However, there’s the vanishing gradient
problem for long sequences.

¢ The gradients that are used to update the
network become extremely small or
"vanish" as they are backpropogated from
the output layers to the earlier layers.

O(sequence length)
A

1

|
.<—>.<—>.<—> 00 A —)) 00 — I
1] t]
.4— < «—> Q000 —p —p 000 —>

Steve Jobs who ... Apple

O Failing to capture long-term dependences.

Drawbacks of RNNs: Lack of Parallelizability

* Forward and backward passes have O(sequence length) unparallelizable
operations

* GPUs can perform many independent computations (like addition) at once!

 But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed.

* Training and inference are slow; inhibits on very large datasets!

}}E—... - ..._._
}u_g_..._._.

Numbers indicate min # of steps before a state can be computed

Drawbacks of RNNs

e Complicated memory and gating structures
e Backprop through time can’t be parallelized

* |s linear order always the most important
structure to model?! (No, but people do
incremental interpretation.)

* |nstead, let’s learn which parts of the context
to pay attention to

Building the Intuition of Attention

Attention treats each token’s representation as a query to access and incorporate
information from a set of values.

* Joday we look at attention within a single sequence.
Number of unparallelizable operations does NOT increase with sequence length.
e Maximum interaction distance: O(l), since all tokens interact at every layer!

wton HEBEBEBEEBEBBAB
] ~ All tokens attend to all tokens
attention n n n n n n n in previous layer; most

— arrows here are omitted

—
embedding n n n n n n n n
h, h, h, h

T

Attention Is All You Need (NeurlPS 2017)

Attention Is All You Need

Ashish Vaswani” Noam Shazeer™ Niki Parmar” Jakob Uszkoreit™
Google Brain Google Brain Google Research Google Research
avaswani@Qgoogle.com noam@google.com nikip@google.com usz@google.com

Llion Jones™ Aidan N. Gomez* ' F.ukasz Kaiser™
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.

Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys
that map to . The matches
one of the keys, returning its value.

keys values

a vl

b V2

C V3
output
d vi —> v4

query
d

Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys In attention, the matches all keys softly, to

that map to values. The matches a weig
one of the keys, returning its value. multip

keys values

a vl

b V2

query query

nt between O and 1. The keys' values are

ied by the weights and summed.

keys values Weighted

Sum
k1 vl
k2 V2
output
k3 V3) —
k4 v4

k5 v5

Self-Attention: Basic Concepts iwviousios

cat
Each vector receives three representations (“roles”) o e
WQ| w [o] =|o| Query: vector from which
i ;] W & theattentionislooking
“"Hey there, do you have this information?”

.
ah
N A
-

] _[°] Key:vectoratwhich the query
Wl X [o
i] & : looks to compute weights

a

o] " I T 1‘*' 2 AV » 4 l—" M c a ':‘ '2ad aalVla ’n"' 1 ™ M - i \/D 2 BN - 2 b ade Vo L\ AT IS i ~ PN A 44
Hi, I have This Informarion - qive me a la ge wel lqﬂ T

Value: their weighted sum is
attention output

H
<
X
[0 o o}
|
EXeXe)

“"Heres the information I have!”

! (R N |
BUAENT KOTHO HA MaTe <eos>
"T" "saw" "cat” "on”" "mat”

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Basic Concepts (wviusos

cat

Query: asking for D s D
Fach vector receives & nformation

WAl X giFvector Trofmw
Q . .
_ e attentionis looking

“"Hey there, do you have this information?”

~ self-attention |

|
oo o

Key: vector at which the query

X -
O looks to compute weights

!
[0 © o]
1
l!) | I

"Hi, I have this information - give me a large weight!”

i

“"Heres the information I have!”

. .

I
—>ooc~|<[

Value: their weighted sum is
attention output

|
[c © 0]

[© © O]

L S
g BWAEST KOTHO HA MATEe <eps>

" W "

"T" ‘“saw cat" “on”" "mat

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Basic Concepts iwviusos

cat
Query: asking for D S D
Fach vector receives t "formation o

~ self-attention |

. O
WQXE

|
oo o

| m "
_) I =1 B =5 Jgoks to compute weights T
A

0] 0 , : - . —
X |o| =[e Value..thelrwelghted sumiis t:j
I | 1 o) attention output O '
“"Heres the information I have!” -X[
O
O
Q

9 BUaen KOTHO HG MaATe <eos>
"T" T“saw” “cat” "on" "mat”

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Basic Concepts iwviusos

cat

~ self-attention |

Query: asking for D
information

QOO

Each vector receives &

- O
Wng

|
oo o

-
-
l...
-
-...
‘op
a..

B
~
X
[0 © o]
|
[0 © O]

“Hi, I have this informg Value: giving the
i - information

© O O BICNEIE

WV X o] =|o O oflel |ollo
L) B 1) O oJle) 1o)leo

"Heres the information I have!” y !XZ v
O O Q

o o 0

O O O

5 BUAEN KOTHO HGQ MATE <eos>

" W 1) "]

"T" "saw” “cat” "on mat"”

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Walk-through

Self-Attention: Walk-through

Can be either input or a hidden layer

Self-Attention: Walk-through

: Howrelevantare a,,a;,a,to a;?

Self-Attention: Walk-through

: Howrelevantare a,,a;,a,to a;?

We denote the level

of relevance as o

lll

How to compute ?

Method 1 (most common): Dot product Method 2: Additive

How to compute ?

Method 1 (most common): Dot product Method 2: Additive

How to compute ?

Cf. encoder-decoder w/
attention, q is the decoder hidden 4
istate and k is the encoder hidden‘

state.

W, . ¢/Q

a, a,

We'll use this! 4! 27

Method 1 (most common): Dot product Method 2: Additive

Self-Attention: Walk-through

Self-Attention: Walk-through

Self-Attention: Walk-through

Self-Attention: Walk-through

X1y =4(;- Ky X13=4(1" ks X4 =41 ky

k3: WK a3 k4: WK a4

a3 =q - ks A4 =q1 " Ky

k3: WK a3 k4: WK a4

a3 =q - ks A4 =q1 " Ky

k3: WK 613 k4: WK a4

Denote how relevant each token are to a!
Use attention scores to extract information

Use attention scores to extract information

Use attention scores to extract information

0‘1,1—»
_
44

g |eg | v,

i!i‘ﬁWVCﬁ !i"zwvaz !iV3WVa3

Use attention scores to extract information

12 —> 1 3 —>

Ky | vy K3 | V3

vy = Wy ay

Use attention scores to extract information

b, = Z a1, Vi
i

b,

/

A1 3 —p B4

0‘1,1—» 12 —»
_
44

g |eg | v, |RZ k3 | Vs

i!i‘ﬁWVCﬁ !i"zwvaz !iV3WVa3

vy = Wy ay

Use attention scores to extract information

bl — Zal,i V
l

b,

—

0‘1,1—» aq 4_>.

Cf. encoder-decoder w/attention, v is just
T the encoder hidden state again.

g |eg | v,

=Wy a vy = Wy ay

Use attention scores to extract information

b, = Z a1, Vi
i

b, : -

0‘1,1—»

=8 more important ¢, is to composing b,

The higher the attention score q, ; is, the

g |eg | v,

V1:WVCZ1 V4:WVCZ4

Repeat the same calculation for all . to obtain b,

Repeat the same calculation for all . to obtain b,

Repeat the same calculation for all . to obtain b,

X 4
é

) 1
é

Repeat the same calculation for all . to obtain b,

0‘2,1—> 0‘22—». 0‘23—». 0‘24—».

Repeat the same calculation for all . to obtain b,

bz — Z aZ,l V
l

| ,

X2 2 —p B4

0‘23—». 0‘24—».

¢ || Vs 43 K3 | Vs léé

Repeat the same calculation for all . to obtain b,

b, = Z @i Vi
i
b2

| _

Cl, 0/
21— Note that the computation of H; can be 2+ — 3

parallelized, as they are independent of
each other
vl

Parallelize the computation!
QKV

Parallelize the computation!
QKV

Parallelize the computation!

Parallelize the computation!

Parallelize the computation!
Attention Scores

Parallelize the computation!

Attention Scores

Parallelize the computation!
Attention Scores

Parallelize the computation!
Attention Scores

Parallelize the computation!

Attention Scores

Parallelize the computation!

Attention Scores

Parallelize the computation!

Attention Scores

Parallelize the computation!
Weighted Sum of Values with Attention Scores

Parallelize the computation!
Weighted Sum of Values with Attention Scores

Parallelize the computation!

Parallelize the computation!
Weighted Sum of Values with Attention Scores

Parallelize the computation!

10%2

Parallelize the computation!
Weighted Sum of Values with Attention Scores

V=1W,

A=0K!

/ SOftmax T
A=IWy(I W) =1W, WL IT A — A = K
A = softmax(A)
H :

T he Matrices Form of Self-Attention

V=IW,

A=0K"

A=IW, I W) =1W, WL I —|: Wy 7
A" = softmax(A) Dimensions?

O=AYV —|: 0€n

T he Matrices Form of Self-Attention

0=1W, I={ay,...,a,} € R™ whereq; € R
K=1 WK WQ? WK? WV S RdXd

V=IW 0,K,VeR™

A=0K"

A=IW, I W) =1W, WL I —|: Wy 7
A" = softmax(A) Dimensions?

O0=A'V —|: gy 2

T he Matrices Form of Self-Attention

0=1W, I={ay,...,a,} € R™ whereq; € R
K=1 WK WQ? WK? WV S RdXd

V=IW 0,K,VeR™

A=0K"

A=1IWy(IW)' =1W, W I' —|: A,A € R™
A = softmax(A) Dimensions?

O0=A'V —|: gy 2

T he Matrices Form of Self-Attention

Q=1WQ I={a19°°-9an} ERnXd,WherediERd
K=1 WK WQ? WK? WV S RdXd

V=IW 0,K,VeR™

A=0K"

A=IW,d W) =TW, WL I" —|: A,A e R™
A = softmax(A)

O=AYV —|: O € R™d

Dimensions?

T he Matrices Form of Self-Attention

Q=1WQ I={a19°°-9an} ERnXd,WherediERd
K=1 WK WQ? WK? WV S RdXd

V=IW 0,K,VeR™

A=0K"

A=IW,d W) =TW, WL I" —|: A,A e R™
A = softmax(A)

O=AYV —|: O € R™d

Dimensions?

Self-Attention: Summary

Self-Attention: Summary

Let wy., be a sequence of words in vocabulary V, like Steve Jobs founded Apple.

Rdx V]

For each w,, leta, = Ew;, where £ € is an embedding matrix.

Self-Attention: Summary

Let wy., be a sequence of words in vocabulary V, like Steve Jobs founded Apple.

For each w;, let a; = Ew,, where E € R*!V is an embedding matrix.

1. Transtorm each word embedding with weight matrices W,,, Wy, Wy, each in Rdxd

d; = WQ a; (queries) k.= Wy a; (keys) v. = Wy a; (values)

Self-Attention: Summary

Let wy., be a sequence of words in vocabulary V, like Steve Jobs founded Apple.

For each w;, let a; = Ew,, where E € R*!V is an embedding matrix.

Rd)(d

1. Transform each word embedding with weight matrices Wo, Wk, Wy, each in

qd; = WQ a; (queries) k.= Wy a; (keys) v. = Wy a; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

/ € ai’j

l,]] 1l ’ e
2,

Self-Attention: Summary

Let wy., be a sequence of words in vocabulary V, like Steve Jobs founded Apple.

For each w;, let a; = Ew,, where E € R*!V is an embedding matrix.

Rd)(d

1. Transform each word embedding with weight matrices Wo, Wk, Wy, each in
q; = Wo a; (queries) k.= Wy a; (keys) v. = Wy a; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

/ € ai’j

a..:k.q. aij: .
l,]] 1l ’ e
2,

3. Compute output for each word as weighted sum of values

b=) a,v,
j

Limitations and Solutions of Self-Attention

O

Limitations and Solutions of Self-Attention

O

No Sequence Order

O

No Nonlinearities

Looking into the Future

Limitations and Solutions of Self-Attention

O

No Sequence Order

O

l

No Nonlinearities

l

Looking into the Future

l

Limitations and Solutions of Self-Attention

O

No Sequence Order — Position Embedding

No Nonlinearities — Adding Feed-forward Networks

Looking into the Future el Masking

No Sequence Order — Position Embedding

 All tokens in an input sequence are simultaneously fed into self-
attention blocks. Thus, there’s no difference between tokens at different
positions.

We lose the position info!

No Sequence Order — Position Embedding

 All tokens in an input sequence are simultaneously fed into self-
attention blocks. Thus, there’s no difference between tokens at different
positions.

* How do we bring the position info back, just like in RNNs?
We lose the position info!

Representing each sequence index as a vector: p € R
fori € {1,...,n}

No Sequence Order — Position Embedding

 All tokens in an input sequence are simultaneously fed into self-
attention blocks. Thus, there’s no difference between tokens at different
positions.

* How do we bring the position info back, just like in RNNs?
We lose the position info!
d

Representing each sequence index as a vector: p € R
fori € {1,...,n}

e Justadd the p; to the input:a. = a, + p; W
 where g, is the embedding of the word at index 1.
+

* We can also concatenate a; and p;, but more commonly we add them.

* How to incorporate the position info into the self-attention blocks?

* |n deep self-attention networks, we do this at the first layer.

Position Representation Vectors via
Sinusoids

Sinusoidal Position Representations (from the original Transformer
paper): concatenate sinusoidal functions of varying periods.

Position Representation Vectors via
Sinusoids

Sinusoidal Position Representations (from the original Transformer
paper): concatenate sinusoidal functions of varying periods.

cos(i/10000%*1/4)

sin(i/100002*%/4)
cos(i/ 100002274

_

" sin(i/10000%#1/d)

Dimension

_/

FE I A

—

F L

= = -Pj .. —

Index in the sequence

https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Position Representation Vectors via
Sinusoids

Sinusoidal Position Representations (from the original Transformer
paper): concatenate sinusoidal functions of varying periods.

i

(i 2x1/dy ™\ - =" - | . > ol -
SlIl(l/lOOOO) - . e — _
cos(i/10000%*1/4) o ==

Pi = . c —
. £
1100002/ -
sin(i/10000-%2"4)
: 2x5/d _
cos(i/10000-2"%) Index in the sequence
_ % https://timodenk.com/blog/linear-relationships-in-the-transtformers-positional-encoding/

b e Periodicity indicates that maybe ‘“absolute position” isn’t as important
U e Maybe can extrapolate to longer sequences as periods restart!

Position Representation Vectors via
Sinusoids

Sinusoidal Position Representations (from the original Transformer
paper): concatenate sinusoidal functions of varying periods.

i

iy,

rE

" sin(i/10000%*1/4) ™ R, =y
C = ' |
cos(i/10000%*1/4) o ==
D = . é ——
° =
o) a
sin(i/10000°*2")
d
COS(i/100002*7/d) Index in the sequence
_ % https://timodenk.com/blog/linear-relationships-in-the-transtformers-positional-encoding/

2 e Periodicity indicates that maybe ‘“absolute position” isn’t as important
U e Maybe can extrapolate to longer sequences as periods restart!

o ® Not learnable; also the extrapolation doesn’t really work!

Learnable Position Representation Vectors

Learned absolute position representations: p; contains learnable parameters.
dX

e Learn a matrix p € R“", and let each p; be a column of that matrix

e Most systems use this method.

Learnable Position Representation Vectors

Learned absolute position representations: p; contains learnable parameters.
dX

e Learn a matrix p € R“", and let each p; be a column of that matrix

e Most systems use this method.

A

U ¢ Flexibility: each position gets to be learned to fit the data

Learnable Position Representation Vectors

Learned absolute position representations: p; contains learnable parameters.
dX

e Learn a matrix p € R“", and let each p; be a column of that matrix

e Most systems use this method.

A

u ¢ Flexibility: each position gets to be learned to fit the data

{) e Cannot extrapolate to indices outside 1,....n.

Learnable Position Representation Vectors

Learned absolute position representations: p; contains learnable parameters.
dX

e Learn a matrix p € R“", and let each p; be a column of that matrix

e Most systems use this method.

A

U ¢ Flexibility: each position gets to be learned to fit the data

\) ° Cannot extrapolate to indices outside 1.....,n.

Sometimes people try more flexible representations of position:
¢ Relative linear position attention [Shaw et al., 2018]
e Dependency syntax-based position [Wang et al., 2019]

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Limitations and Solutions of Self-Attention

O

No Sequence Order — Position Embedding

No Nonlinearities — Adding Feed-forward Networks

Looking into the Future el Masking

Limitations and Solutions of Self-Attention

O

No Sequence Order — Position Embedding

No Nonlinearities — Adding Feed-forward Networks

Looking into the Future el Masking

No Nonlinearities — Add Feed-forward
Networks

There are no element-wise
nonlinearities in self-attention; stacking
more self-attention layers just re-
averages value vectors.

No Nonlinearities — Add Feed-forward
Networks

T here are no element-wise

nonlinearities in self-attention; stacking
more self-attention layers just re-

averages value vectors. Self-Attention

b,

Easy Fix: add a feed-forward network to

o post-process each output vector. FF

Self-Attention

43 2%)

Limitations and Solutions of Self-Attention

O

No Sequence Order — Position Embedding

No Nonlinearities — Adding Feed-forward Networks

Looking into the Future el Masking

Limitations and Solutions of Self-Attention

O

No Sequence Order — Position Embedding

No Nonlinearities — Adding Feed-forward Networks

Looking into the Future el Masking

Looking into the Future — Masking

Looking into the Future — Masking

¢ In decoders (language modeling,
producing the next word given
previous context), we need to
ensure we don’t peek at the
future.

Looking into the Future — Masking

In decoders (language modeling,
producing the next word given
previous context), we need to
ensure we don’t peek at the

future.
At every time-step, we could

change the set of keys and
queries to include only past
words. (Inefficient!)

Looking into the Future — Masking

¢ In decoders (language modeling,
producing the next word given
previous context), we need to
ensure we don’t peek at the

future.
® At every time-step, we could

change the set of keys and
queries to include only past
words. (Inefficient!)

® To enable parallelization, we
mask out attention to future
words by setting attention scores

to — 0.

Looking into the Future — Masking

In decoders (language modeling,
producing the next word given
previous context), we need to
ensure we don’t peek at the

future.
At every time-step, we could

change the set of keys and
queries to include only past
words. (Inefficient!)

® To enable parallelization, we
mask out attention to future
words by setting attention scores

tO — 0.

We can look at these (not
greyed out) words

q; kjaj <1
i = 00,] > 1 N\
— 00, &
\C.)«P\ ,‘\(\6 a(\es\ ®\(\O
[START]
The
For encoding
these words
chet
who

Now We Put Things Together

o Self-attention

® The basic computation
e Positional Encoding

¢ Specify the sequence order
® Nonlinearities

¢ Adding a feed-forward network at the
output of the self-attention block

¢ Masking

e Parallelize operations (looking at all
tokens) while not leaking info from the

Now We Put Things Together

o Self-attention

® The basic computation
e Positional Encoding

¢ Specify the sequence order
® Nonlinearities

¢ Adding a feed-forward network at the
output of the self-attention block

¢ Masking

¢ Parallelize operations (looking at all + _|: _

tokens) while not leaking info from the Input Embeddings

T

Inputs

Now We Put Things Together

o Self-attention

® The basic computation
e Positional Encoding

¢ Specify the sequence order
® Nonlinearities

¢ Adding a feed-forward network at the

output of the self-attention block

¢ Masking

e Parallelize operations (looking at all + -|:
tokens) while not leaking info from the

Input Embeddings

T

Inputs

Now We Put Things Together

o Self-attention
® The basic computation
e Positional Encoding
¢ Specify the sequence order

® Nonlinearities

¢ Adding a feed-forward network at the
output of the self-attention block
¢ Masking |
e Parallelize operations (looking at all + {
Input Embeddings

T

Inputs

tokens) while not leaking info from the

o Self-attention
® The basic computation

e Positional Encoding

¢ Specify the sequence order

® Nonlinearities

¢ Adding a feed-forward network at the
output of the self-attention block

¢ Masking

e Parallelize operations (looking at all
tokens) while not leaking info from the

Now We Put Things Together o

Probabilities

!
A
T

Masked Self-Attention

oz

Input Embeddings

T

Inputs

Now We Put Things Together o

Probabilities

e Self-attention

® The basic computation

1
+

{ q
L [L
[4

¢ Positional Encoding
¢ Specify the sequence order

T

Masked Self-Attention

® Nonlinearities

¢ Adding a feed-forward network at the
output of the self-attention block Block
Masking |
e Parallelize operations (looking at all + _|:
Input Embeddings

T

Inputs

Repeat for number
of encoder blocks

tokens) while not leaking info from the

The Transformer Decoder

The Transformer Decoder

e A Transformer decoder is what we
use to build systems like language
models.

The Transformer Decoder

e A Transformer decoder is what we
use to build systems like language
models.

e It's a lot like our minimal self-attention
architecture, but with a few more
components.

® Residual connection ("Add"”)

® [ayer normalization (“Norm")

The Transformer Decoder

e A Transformer decoder is what we
use to build systems like language
modaels.

e It's a lot like our minimal self-attention
architecture, but with a few more
components.

® Residual connection ("Add"”)

® [ayer normalization (“Norm")

® Replace self-attention with multi-
head self-attention.

The Transformer Decoder

e A Transformer decoder is what we
use to build systems like language
models.

e It's a lot like our minimal self-attention
architecture, but with a few more
components.

® Residual connection ("Add"”)

® [ayer normalization (“Norm")

® Replace self-attention with multi- n | _

head self-attention. Input Embeddings

T

Inputs

The Transformer Decoder

e A Transformer decoder is what we
use to build systems like language

models.
eeda-rorwarc

e It's a lot like our minimal self-attention
architecture, but with a few more
components. Nasked Multi-heac

® Residual connection ("Add"”) Attention

® [ayer normalization (“Norm")

® Replace self-attention with multi- n | _

head self-attention. Input Embeddings

T

Inputs

The Transformer Decoder

e A Transformer decoder is what we
use to build systems like language
models.

Feed-Forwarc

e It's a lot like our minimal self-attention
architecture, but with a few more ~ Add&Norm
components.

® Residual connection ("Add"”) Attention

® [ayer normalization (“Norm")

¢ Replace self-attention with multi- n _|:
head self-attention. Input Embeddings
T

Inputs

The Transformer Decoder

o A Transformer decoder is what we
use to build systems like language ~ Add&Norm

models. :
architecture, but with a few more

components.

® Residual connection ("Add"”) Attention

® [ayer normalization (“Norm")

e It's a lot like our minimal self-attention

¢ Replace self-attention with multi- n _|:
head self-attention. Input Embeddings
T

Inputs

The Transformer Decoder

e A Transformer decoder is what we
use to build systems like language
models.

e It's a lot like our minimal self-attention
architecture, but with a few more
components. Nasked Multi-heac

® Residual connection ("Add"”) Attention

® [ayer normalization (“Norm")

¢ Replace self-attention with multi- n _|:
head self-attention.

Input Embeddings

T

Inputs

Output Pr:babilities

The Transformer Decoder

e A Transformer decoder is what we
use to build systems like language
models.

e It's a lot like our minimal self-attention
architecture, but with a few more
components.

® Residual connection ("Add"”)

® [ayer normalization (“Norm")

¢ Replace self-attention with multi- n _|:
head self-attention.

Input Embeddings

T

Inputs

Output Pr:babilities

The Transformer Decoder

e A Transformer decoder is what we
use to build systems like language

models. =
Qo 5
€ O
e It's a lot like our minimal self-attention z 2
architecture, but with a few more 12 §
T Y
components. 0 3 Viasked Multi-heac
® Residual connection ("Add”) g O Attention
® [ayer normalization (“Norm")
¢ Replace self-attention with multi- 1 _|:
head self-attention. Input Embeddings

T

Inputs

Why Multi-head Attention?

What if we want to look in
multiple places in the

sentence at once?

Why Multi-head Attention?

What if we want to look in
multiple places in the

2 o
sentence at once: Instead of having only one

attention head, we can create

multiple sets of (queries, keys,
values) independent from each
other!

Multi-Head Attention: Walk-through

Multi-head Attention

Multi-Head Attention: Walk-through

Multi-head Attention

Multi-Head Attention: Walk-through

Multi-head Attention

Multi-Head Attention: Walk-through

il _’

4i1 4 4i2 ki,l Vii

~1_

Multi-head Attention

Multi-Head Attention: Walk-through

bi,l

~1_

Multi-head Attention

Multi-head Attention

qj ,

Multi-head Attention

Multi-head Attention

Multi-head Attention ‘\“/

Multi-head Attention

Multi-head Attention

Concatenation

Multi-head Attention

Concatenation

‘\“/ Multi-head Attention ‘\ﬁ/

Recall the Matrices Form of Self-Attention

0=1W, I={ay,..., a,} € R™4 where a; € R
K=1 WK WQ’ WK’ WV = RdXd

V=IW, 0,K,VeR™

A=0K"

A=1W,U WK)T:IWQ W%IT —|: A,A € R™n
A = softmax(A)

O=AYV —|: 0 € R™

Multi-head Attention in Matrices

e Multiple attention “heads” can be defined via multiple Wo, Wi, Wy, matrices

o Let Wé, WIZ{, W‘l, e | dx%, where /: is the number of attention heads, and /
ranges from 1 to /.

e Each attention head performs attention independently:
e O' = softmax(I W, W, I") W),

e Concatenating different O’ from different attention heads.
e O=[0!...:0"Y, whereY € R

The Matrices Form of Multi-head Attention

[__ [
—3 Y .

[__ [
K —IWK WZQ, WIZO W‘Z/E Rdx%

[— 7wl
Vi=1W, 0.k v e {|ER
Al = 0! x! /

Al 4 e RERR

Al = softmax(A))

A { Dimensions?

O=[01;...;Oh]Y

The Matrices Form of Multi-head Attention

Ql =/ WZQ [={ay,...,a,} € R"™4 where a; € RY
[_ [L w! w! dx4

K'=1W, Wo, Wy, Wy, € R

Vl:IW‘l/ QZ,KZ, Vl€[nx%

AlelKlT

, i o' e ER
Al = softmax(A))

| Dimensions?
Ol :Al Vl _|:

O=[01;...;0h]Y

The Matrices Form of Multi-head Attention

[__ [
=W =
Q 0 I={ay,...,a} € R™ wherea € R?
[[
K'=1W, Wi, Wk, W, € RS
[[
Vi=1W, 0. K.Vl e R
Al=Ql K" |
Q AZ,AZ = [R7Xn

Al = softmax(A))

A { Dimensions?

O=[01;...;0h]Y

The Matrices Form of Multi-head Attention

[__ [
=W =
Q 0 I={ay,...,a} € R™ wherea € R?
[[
K'=1W, Wi, Wk, W, € RS
[[
Vi=1W, 0. K.Vl e R
Al=Ql K" |
Q AZ,AZ = [R7Xn

Al = softmax(A))

A { Dimensions?

O=[01;...;0h]Y

The Matrices Form of Multi-head Attention

[__ [
=W =
Q 0 I={ay,...,a} € R™ wherea € R?
[[
K'=1W, Wi, Wk, W, € RS
[[
Vi=1W, 0. K.Vl e R
Al=Ql K" |
Q AZ,AZ = [R7Xn

Al = softmax(A))

A { I Dimensions?

O=[01;...;Oh]Y

The Matrices Form of Multi-head Attention

Ql =] WZQ [={ay,...,a,} € R”Xd, where a; € R4
K'=1W, WL, W, W, € R
Vl —] W‘l/ Ql, Kl, Vl = Rnx%

Al = 0! x!
Al = softmax(A?)

| Dimensions?
O =A"V —|: 0! € R™5

Al’,Al = [R7Xn

Y € Rdxd
[0':....0" e R™d
o N= Rnxd

O=[01;...;Oh]Y

The Matrices Form of Multi-head Attention

Ql =] WZQ [={ay,...,a,} € R”Xd, where a; € R4
K'=1W, WL, W, W, € R
Vl —] W‘l/ Ql, Kl, Vl = Rnx%

Al = 0! x!
Al = softmax(A?)

| Dimensions?
O =A"V —|: 0! € R™5

Al’,Al = [R7Xn

Y € Rdxd
[0':....0" e R™d
o N= Rnxd

O=[01;...;Oh]Y

Multi-head Attention is Computationally Efficient

e Even though we compute /# many attention heads, it's not more costly.

e We compute / W, € R, and then reshape to R<IXG
¢ Likewise for/ W, and I W,.

e Then we transpose to R™%5» now the head axis is like a batch axis.

o Almost everything else is identical. All we need to do is to reshape the
tensors!

Multi-head Attention is Computationally Efficient

e Even though we compute /# many attention heads, it's not more costly.

e We compute / W, € R, and then reshape to R<IXG
¢ Likewise for/ W, and I W,.

e Then we transpose to R™%5» now the head axis is like a batch axis.

o Almost everything else is identical. All we need to do is to reshape the
tensors!
T T
Wi = I W, WE I
= Rthxn

Multi-head Attention is Computationally Efficient

e Even though we compute /# many attention heads, it's not more costly.

nxhx%

e We compute / W, € R and then reshape to |
o Likewise for/ W, and I W,

e Then we transpose to R™%5» now the head axis is like a batch axis.

o Almost everything else is identical. All we need to do is to reshape the
tensors!

T T o
wT T - T Wy Wil h sets of attention scores!
- —

= Rthxn

Multi-head Attention is Computationally Efficient

¢ Even though we compute /: many attention heads, it's not more costly.

nxhx%

e We compute / W, € R and then reshape to |
¢ Likewise for/ W, and I W,.

e Then we transpose to R™%5» now the head axis is like a batch axis.

o Almost everything else is identical. All we need to do is to reshape the

tensors!

L

h sets of attention scores!

= than

Softm ax(

Multi-head Attention is Computationally Efficient

¢ Even though we compute /: many attention heads, it's not more costly.

nxhx%

e We compute / W, € R and then reshape to |
¢ Likewise for/ W, and I W,.

e Then we transpose to R™%5» now the head axis is like a batch axis.

o Almost everything else is identical. All we need to do is to reshape the

tensors!

-

h sets of attention scores!

= than

Softm ax(

Multi-head Attention is Computationally Efficient

¢ Even though we compute /: many attention heads, it's not more costly.

nxhx%

e We compute / W, € R and then reshape to |
¢ Likewise for/ W, and I W,.

e Then we transpose to R™%5» now the head axis is like a batch axis.

o Almost everything else is identical. All we need to do is to reshape the

tensors!
III = than

B0

h sets of attention scores!

Softm ax(

SCa|Ed DOt P"Od“:t [Vaswani et al., 2017]

e “Scaled Dot Product” attention aids in training.

e When dimensionality d becomes large, dot products between vectors tend to
become large.

e Because of this, inputs to the softmax function can be large, making the gradients
small.

SCa|Ed DOt P"Od“:t [Vaswani et al., 2017]

“Scaled Dot Product” attention aids in training.

When dimensionality d becomes large, dot products between vectors tend to
become large.

e Because of this, inputs to the softmax function can be large, making the gradients
small.

Instead of the self-attention function
we've seen:

o O'=softmax(I W, Wi I") I W,

We divide the attention scores by \/d/#h, to
stop the scores from becoming large just as a

function of d// (the dimensionality divided by the
number of heads).

Scaled Dot Product [Vaswani et al., 2017]

“Scaled Dot Product” attention aids in training.

When dimensionality d becomes large, dot products between vectors tend to
become large.

e Because of this, inputs to the softmax function can be large, making the gradients
small.

Instead of the self-attention function
we've seen:

T
o O'=softmax(I W, Wi I") I W, I Wy, Wy

We divide the attention scores by \/d/#h, to \/d/h
stop the scores from becoming large just as a

function of d// (the dimensionality divided by the
number of heads).

0! = softmax(

Output Pr:babilities

The Transformer Decodert.

—e—

Add & Norm
0
_GQ’ ~ Feed-Forward
£ O
S
€ 2 A
= % d & Norm
| S
- O
g 2
g_ o Masked Multi-head
e o Attention

Block

=

Inputs

Output Pr:babilities

The Transformer Decoder

* Now that we've replaced self-
attention with multi-head self-
attention, we'll go through two
optimization tricks:
® Residual connection (“Add”)

® [Layer normalization (“Norm™”)

Feed-Forward

Masked Multi-head
Attention

Repeat for number
of encoder blocks

il
Input Embeddings

T

Inputs

Residual Connections [Heetal,2016]

https://arxiv.org/abs/1512.03385

Residual Connections [Heetal,2016]

® Residual connections are a trick to help models train better.

https://arxiv.org/abs/1512.03385

Residual Connections [Heetal,2016]

® Residual connections are a trick to help models train better.

¢ Instead of X\ = Layer(X"" V) (where i represents the layer)

https://arxiv.org/abs/1512.03385

Residual Connections [Heetal,2016]

® Residual connections are a trick to help models train better.

¢ Instead of X\ = Layer(X"" V) (where i represents the layer)

—1 l

https://arxiv.org/abs/1512.03385

Residual Connections [Heetal,2016]

® Residual connections are a trick to help models train better.

¢ Instead of X\ = Layer(X"" V) (where i represents the layer)

—1 l

e We let X = XD 4 Layer(X“~V) (so we only have to learn “the residual”
from the previous layer)

https://arxiv.org/abs/1512.03385

Residual Connections [Heetal,2016]

® Residual connections are a trick to help models train better.

¢ Instead of X\ = Layer(X"" V) (where i represents the layer)

—1 l

e We let X = XD 4 Layer(X“~V) (so we only have to learn “the residual”
from the previous layer)

e I

X(i— 1) R X(l)

https://arxiv.org/abs/1512.03385

Residual Connections [Heetal,2016]

® Residual connections are a trick to help models train better.

¢ Instead of X\ = Layer(X"" V) (where i represents the layer)

—1 l

e We let X = XD 4 Layer(X“~V) (so we only have to learn “the residual”
from the previous layer)

e I

e Gradient is great through the residual
connection; it's 1!

X(i— 1) R X(l)

https://arxiv.org/abs/1512.03385

Residual Connections [Heetal,2016]

® Residual connections are a trick to help models train better.

¢ Instead of X\ = Layer(X"" V) (where i represents the layer)

—1 l

e We let X = XD 4 Layer(X“~V) (so we only have to learn “the residual”
from the previous layer)

e I

e Gradient is great through the residual
connection; it's 1!

X(i— 1) R X(l)

¢ Bias towards the identity function!

https://arxiv.org/abs/1512.03385

Residual Connections [Heetal,2016]

® Residual connections are a trick to help models train better.

¢ Instead of X\ = Layer(X"" V) (where i represents the layer)

—1 l

e We let X = XD 4 Layer(X“~V) (so we only have to learn “the residual”
from the previous layer)

e Gradient is great through the residual
connection; it's 1!

XD

[no residuals] [residuals]

¢ Bias towards the identity function! [Loss landscape visualization,
Li etal., 2018, on a ResNet]

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf

Layer Normalization [Baetal,20i6]

https://arxiv.org/abs/1607.06450

Layer Normalization [Baetal,20i6]

e Layer normalization is a trick to help models train faster.

https://arxiv.org/abs/1607.06450

Layer Normalization [Baetal,20i6]

e Layer normalization is a trick to help models train faster.

¢ |dea: cut down on uninformative variation in hidden vector values by normalizing to unit
mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

https://arxiv.org/abs/1607.06450

Layer Normalization [Baetal,20i6]

e Layer normalization is a trick to help models train faster.

¢ |dea: cut down on uninformative variation in hidden vector values by normalizing to unit
mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

e Letx € R be an individual (word) vector in the model.

https://arxiv.org/abs/1607.06450

Layer Normalization [Baetal,20i6]

e Layer normalization is a trick to help models train faster.

¢ |dea: cut down on uninformative variation in hidden vector values by normalizing to unit
mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

e Letx € R be an individual (word) vector in the model.

d
Let i = Z x ;; this is the mean; u € R.
J=1

https://arxiv.org/abs/1607.06450

Layer Normalization [Baetal,20i6]

e Layer normalization is a trick to help models train faster.

¢ |dea: cut down on uninformative variation in hidden vector values by normalizing to unit
mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

e Letx € R be an individual (word) vector in the model.

d
Let i = Z x ;; this is the mean; u € R.
J=1

2
(xj — ,u> ; this is the standard deviation; o € R.

1 d
Let 0 =
=1

. \E.

J

https://arxiv.org/abs/1607.06450

Layer Normalization [Baetal,20i6]

e Layer normalization is a trick to help models train faster.

¢ |dea: cut down on uninformative variation in hidden vector values by normalizing to unit
mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

e Letx € R be an individual (word) vector in the model.

d
Let i = Z x ;; this is the mean; u € R.
J=1

2
(xj — ,u> ; this is the standard deviation; o € R.

1 d
Let 0 =
=1

. \E.

J

¢ Lety € RYand f € R?be learned “gain” and “bias” parameters. (Can omit!)

https://arxiv.org/abs/1607.06450

Layer Normalization [Baetal,20i6]

e Layer normalization is a trick to help models train faster.

¢ |dea: cut down on uninformative variation in hidden vector values by normalizing to unit
mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

e Letx € R be an individual (word) vector in the model.

d
Let i = Z x ;; this is the mean; u € R.
J=1

2
(xj — ,u> ; this is the standard deviation; o € R.

1 d
Let 0 =
=1

. \E.

J

¢ Lety € RYand f € R?be learned “gain” and “bias” parameters. (Can omit!)

¢ Then layer normalization computes:
X —H
output = xy 4+ f
o+ E€

https://arxiv.org/abs/1607.06450

Layer Normalization [Baetal,20i6]

e Layer normalization is a trick to help models train faster.

¢ |dea: cut down on uninformative variation in hidden vector values by normalizing to unit
mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

o Letx € Rd be an individual (word) vector in the model.

Let i = Z x ;; this is the mean; u € R.

2
Z (xj — ,u) ; this is the standard deviation; o € R.
j=1

. Leta=\é

¢ Lety € RYand f € R?be learned “gain” and “bias” parameters. (Can omit!)

¢ Then layer normalization computes:

x —
o Output = A Y+ p Modulate by learned

scalar mean and /’ '\ element-wise gain and

variance bias

Normalize by

https://arxiv.org/abs/1607.06450

Output Pr:babilities

The Transformer Decodert.

—e—

Add & Norm
0
_GQ’ ~ Feed-Forward
£ O
S
€ 2 A
= % d & Norm
| S
- O
g 2
g_ o Masked Multi-head
e o Attention

Block

=

Inputs

Output Pr:babilities

The Transformer Decoder

A

e The Transformer Decoder is a stack

of Transformer Decoder Blocks. g g
e Each Block consists of: g 5

e Masked Multi-head Self-attention 5 §

¢ Add & Norm &

® Feed-Forward

e Add & Norm

il
Input Embeddings

T

Inputs

Output Pr:babilities

The Transformer Encoder Bl o

T T—

n W

2 ¥ Feed-Forward
& 0

3 o

C = > N

e = o orm
0

®

g_ O Multi-head

e O Attention

Block

il

Encoder Inputs

Output Pr:babilities

The Transformer =ncoder

® The Transformer Decoder
constrains to unidirectional
context, as for language
models.

e What if we want bidirectional

context, like in a bidirectional
RNN?

® We use Transformer Encoder
— the ONLY difference is that

we remove the masking in + —|:
self-attention.

Repeat for number
of encoder blocks

Input Embeddings

Encoder Inputs

Output Pr:babilities

The Transformer =ncoder

® The Transformer Decoder
constrains to unidirectional
context, as for language
models.

e What if we want bidirectional

context, like in a bidirectional
RNN?

e We use Transformer Encoder
— the ONLY difference is that
we remove the masking in
self-attention.

Repeat for number
of encoder blocks

Multi-heac
Attention

Block

No masks! N |:
Input Embeddings

Encoder Inputs

The Transformer =-ncoder=Decoder

The Transformer =-Decoder

¢ More on Encoder-Decoder models will be Wi 125+ - -
introduced in future lectures!

¢ Right now we only need to know that it processes ’%ﬁ
the source sentence with a bidirectional model

() and generates the target with a
unidirectional model (Decoder). W

® The Transformer Decoder is modified to perform
cross-attention to the output of the Encoder. Wi e Wy,

Cross-Attention

5« Norm

Multi-head

Attention

Block

+{—

Encoder Inputs

Masked Multi-head
Attention

5 Norm

Masked Multi-head
Attention

Block

+{—

Decoder Inputs

Output Probabilities

Cross-Attention Details

Cross-Attention Details

e Self-attention: queries, keys, and values come from the same source.

e Cross-Attention: keys and values are from (like a memory);
queries are from Decoder.

e Let /1, ..., 1, be output vectors from the Transformer , h, € 1
e Let Z,,..., Z, be input vectors from the Transformer decoder, 7; € | d
¢ Keys and values from the :

o k= Wg h,

o v, =Wy h

¢ Queries are drawn from the decoder:
e q;=Wopz

The Revolutionary Impact of Transformers

 Almost all current-day leading language models use Transformer building blocks.
e Eg,GPTI1/2/3/4,T5,Llama 1/2, BERT, ... almost anything we can name
* Transformer-based models dominate nearly all NLP leaderboards.

wK

* Since Transformer has been popularized in v [0 TP[Acertion
language applications, computer vision W’L 'E' « [S+ [t
also adapted Transformers, e.g., Vision TN\ e o
Transformers. v e

[Khan et al., 2021]

https://arxiv.org/pdf/2101.01169.pdf

The Revolutionary Impact of Transformers

 Almost all current-day leading language models use Transformer building blocks.
e Eg,GPTI1/2/3/4,T5,Llama 1/2, BERT, ... almost anything we can name
* Transformer-based models dominate nearly all NLP leaderboards.

* Since Transformer has been popularized in s T e
° ° o o] * Softmax elf-attended
language applications, computer vision h*ﬁ Mo g f : B? - reae s
o o N ' YH I '
also adapted Transformers, e.g., Vision dem &

» o et cony
Transformers. v [l

[Khan et al., 2021]

What's next after

Transformers?

https://arxiv.org/pdf/2101.01169.pdf

