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Drawbacks of RNNs: Lack of Parallelizability

Lecture 5: Attention & Transformers4

• Forward and backward passes have O(sequence length) unparallelizable 
operations
• GPUs can perform many independent computations (like addition) at once!
• But future RNN hidden states can’t be computed in full before past RNN 

hidden states have been computed.
• Training and inference are slow; inhibits on very large datasets!

Numbers indicate min # of steps before a state can be computed
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Drawbacks of RNNs
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• Complicated memory and gating structures
• Backprop through time can’t be parallelized
• Is linear order always the most important 

structure to model? (No, but people do 
incremental interpretation.)

• Instead, let’s learn which parts of the context 
to pay attention to



Building the Intuition of Attention
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• Attention treats each token’s representation as a query to access and incorporate 
information from a set of values.
• Today we look at attention within a single sequence.

• Number of unparallelizable operations does NOT increase with sequence length.
• Maximum interaction distance: O(1), since all tokens interact at every layer!

All tokens attend to all tokens 
in previous layer; most 
arrows here are omitted
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h1 h2 hT
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attention
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Attention Is All You Need (NeurIPS 2017)
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We can think of attention as performing fuzzy lookup in a key-value store.
In a lookup table, we have a table of keys 
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, to 
a weight between 0 and 1. The keys’ values are 
multiplied by the weights and summed.
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Self-Attention: Basic Concepts
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[Lena Viota Blog]

Query: asking for 
information

Key: saying that it 
has some information

Value: giving the 
information

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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a1 a2 a3 a4

b1 b2 b3 b4

Can be either input or a hidden layer

Self-Attention Layer

Each  is obtained by considering bi ∀ai
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a1 a2 a3 a4

b1

How relevant are  to ?a2, a3, a4 a1 We denote the level 
of relevance as α
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WQ

a4
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q k.

α = q ⋅ k

Method 1 (most common): Dot product Method 2: Additive
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a1

WQ

a4

WK

q k.

α = q ⋅ k

Method 1 (most common): Dot product Method 2: Additive

a1

WQ

a4

WK

q k

α

tanh

W

We’ll use this!

+
Cf. encoder-decoder w/

attention, q is the decoder hidden 
state and k is the encoder hidden 

state.
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α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4attention scores

q1 = WQ a1

q1query

k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3

a1 a2 a3 a4
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α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3

a1 a2 a3 a4
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α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4
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α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Softmax
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α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Softmax

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

α′￼

1,i =
eα1,i

∑j eα1,j
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α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Softmax

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

Denote how relevant each token are to ! 
Use attention scores to extract information

a1
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q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

a1 a2 a3 a4

Use attention scores to extract information
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q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information
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q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1 ×× ××

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information
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q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1 ×× ××

b1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

b1 = ∑
i

α′￼

1,i vi
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q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1 ×× ××

b1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

b1 = ∑
i

α′￼

1,i vi

Cf. encoder-decoder w/attention, v is just 
the encoder hidden state again.
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q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1 ×× ××

b1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

b1 = ∑
i

α′￼

1,i vi

The higher the attention score  is, the 
more important  is to composing 

α′￼

1,i
ai b1
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q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all  to obtain ai bi

b2 = ∑
i

α′￼

2,i vi

q3 q4q2

b2

a1 a2 a3 a4
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q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all  to obtain ai bi

b2 = ∑
i

α′￼

2,i vi

q3 q4q2

b2

Note that the computation of  can be 
parallelized, as they are independent of 

each other

bi

a1 a2 a3 a4



= WK

Lecture 5: Attention & Transformers21

= WQ = WV

Parallelize the computation! 
QKV



= WK

Lecture 5: Attention & Transformers21

= WQ

q1 a1

q2 a2

q3 a3

q4 a4

Q I

= WV

Parallelize the computation! 
QKV
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= WQ

q1 a1

q2 a2

q3 a3

q4 a4

Q I

= WV

v1 a1

v2 a2

v3 a3

v4 a4

V I

Parallelize the computation! 
QKV
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q1 k2 k4k3k1

α′￼

1,2 α′￼

1,3 α′￼

1,4α′￼

1,1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Parallelize the computation! 
Attention Scores
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v1 = WV a1

v2
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v4 = WV a4

a1 a2 a3 a4

Parallelize the computation! 
Attention Scores α1,1

k1
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k4=
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α1,1

k1

α1,2

k2

α1,3

k3

α1,4

k4=

q1

Parallelize the computation! 
Attention Scores
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=

α1,1 α1,2 α1,3 α1,4α′￼

1,1

α′￼

2,1

α′￼

3,1

α′￼

4,1

α′￼

1,2

α′￼

2,2

α′￼

3,2

α′￼

4,2

α′￼

1,3

α′￼

2,3

α′￼

3,3

α′￼

4,3

α′￼

1,4

α′￼

2,4

α′￼

3,4

α′￼

4,4

k1 k2 k3 k4

q1

α2,1 α2,2 α2,3 α2,4 q2

α3,1 α3,2 α3,3 α3,4 q3
α4,1 α4,2 α4,3 α4,4 q4

Parallelize the computation! 
Attention Scores
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=

α1,1 α1,2 α1,3 α1,4α′￼

1,1

α′￼

2,1

α′￼

3,1

α′￼

4,1

α′￼

1,2

α′￼

2,2

α′￼

3,2

α′￼

4,2

α′￼

1,3

α′￼

2,3

α′￼

3,3

α′￼

4,3

α′￼

1,4

α′￼

2,4

α′￼

3,4

α′￼

4,4

k1 k2 k3 k4

q1

α2,1 α2,2 α2,3 α2,4 q2

α3,1 α3,2 α3,3 α3,4 q3
α4,1 α4,2 α4,3 α4,4 q4

A′￼ A
Q

KT

Parallelize the computation! 
Attention Scores
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Parallelize the computation! 
Weighted Sum of Values with Attention Scores
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=

b1
α′￼

1,1

v1
α′￼

1,2

v2

α′￼

1,3

v3

α′￼

1,4

v4

α′￼

1,1 v1 α′￼

1,2 v2+ α′￼

1,3 v3+ α′￼

1,4 v4+

Parallelize the computation! 
Weighted Sum of Values with Attention Scores
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Parallelize the computation!

α′￼

1,1 α′￼

1,2 α′￼

1,3 α′￼

1,4

=

b1 v1

v2

v3

v4

Parallelize the computation! 
Weighted Sum of Values with Attention Scores
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Parallelize the computation!

α′￼

1,1 α′￼

1,2 α′￼

1,3 α′￼

1,4

=

b1

α′￼

2,1 α′￼

2,2 α′￼

2,3 α′￼

2,4
b2

α′￼

3,1 α′￼

3,2 α′￼

3,3 α′￼

3,4b3

v1

v2

v3

v4
α′￼

4,1 α′￼

4,2 α′￼

4,3 α′￼

4,4b4

A′￼

VO

Parallelize the computation! 
Weighted Sum of Values with Attention Scores
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= WQQ I = WKK I = WVV I

Q KTA′￼ A =Softmax

A′￼= VO

Q = I WQ

K = I WK

V = I WV

O = A′￼ V

A = I WQ (I WK)T = I WQ WT
K IT

A′￼ = softmax(A)

A = Q KT
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Q = I WQ

K = I WK

V = I WV

O = A′￼ V

The Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′￼, A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′￼ = softmax(A)

A = Q KT

Dimensions?

?

?

?
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The Matrices Form of Self-Attention
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Self-Attention: Summary
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Let  be a sequence of words in vocabulary , like Steve Jobs founded Apple. 
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1. Transform each word embedding with weight matrices  , each in WQ, WK, WV ℝd×d

qi = WQ ai (queries) ki = WK ai (keys) vi = WV ai (values)

Let  be a sequence of words in vocabulary , like Steve Jobs founded Apple. 
For each , let , where  is an embedding matrix.

w1:n 𝑉
wi ai = Ewi E ∈ ℝd×|V|

2. Compute pairwise similarities between keys and queries; normalize with softmax

α′￼

i,j =
eαi,j

∑j eαi,jαi,j = kj qi

3. Compute output for each word as weighted sum of values

bi = ∑
j

α′￼

i,j vj
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Position Embedding

Adding Feed-forward Networks

Masking
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No Sequence Order  Position Embedding→
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• How to incorporate the position info into the self-attention blocks?

• Just add the  to the input: 

• where  is the embedding of the word at index .

• In deep self-attention networks, we do this at the first layer.

• We can also concatenate  and , but more commonly we add them.

pi ̂ai = ai + pi

ai i

ai pi

• All tokens in an input sequence are simultaneously fed into self-
attention blocks. Thus, there’s no difference between tokens at different 
positions.

• We lose the position info!
• How do we bring the position info back, just like in RNNs?

• Representing each sequence index as a vector:    , 
for 

pi ∈ ℝd

i ∈ {1,...,n}
qi ki vi

aipi +
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Lecture 5: Attention & Transformers33

Sinusoidal Position Representations (from the original Transformer 
paper): concatenate sinusoidal functions of varying periods.

cos(𝑖/100002∗1/𝑑)
𝒑𝑖  =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗ 𝑑
2 /𝑑)

cos(𝑖/100002∗ 𝑑
2 /𝑑)

• Periodicity indicates that maybe “absolute position” isn’t as important
• Maybe can extrapolate to longer sequences as periods restart!

• Not learnable; also the extrapolation doesn’t really work!

Index in the sequence

Di
m

en
sio

n
https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/
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Learnable Position Representation Vectors 

• Flexibility: each position gets to be learned to fit the data

• Cannot extrapolate to indices outside .1,...,n

Learned absolute position representations:  contains learnable parameters.

• Learn a matrix , and let each  be a column of that matrix
• Most systems use this method.

pi
p ∈ ℝd×n pi

Sometimes people try more flexible representations of position:
• Relative linear position attention [Shaw et al., 2018]
• Dependency syntax-based position [Wang et al., 2019]

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf
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No Nonlinearities  Add Feed-forward 
Networks

→

Lecture 5: Attention & Transformers36

There are no element-wise 
nonlinearities in self-attention; stacking 
more self-attention layers just re-
averages value vectors. 

Easy Fix: add a feed-forward network to 
post-process each output vector.

a1 a2 an

b1

Self-Attention

…

FF FF FF…

b2 bn

Self-Attention

c1

FF FF FF…

c2 cn

…

…
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Looking into the Future  Masking→

• To enable parallelization, we 
mask out attention to future 
words by setting attention scores 
to .−∞

αi,j = {qi kj, j ≤ i
−∞, j > i

The

chef

who

[START]

For encoding  
these words

The chef
who

[START]

We can look at these (not 
greyed out) words

−∞

−∞−∞

−∞−∞ −∞

• In decoders (language modeling, 
producing the next word given 
previous context), we need to 
ensure we don’t peek at the 
future.

• At every time-step, we could 
change the set of keys and 
queries to include only past 
words. (Inefficient!)
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• Nonlinearities 
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models.
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What if we want to look in 
multiple places in the 
sentence at once?

?
Instead of having only one 

attention head, we can create 
multiple sets of (queries, keys, 

values) independent from each 
other!
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××
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qi ki vi

ai

qj kj vj

aj

bi,2

bi,1
Y=bi

Multi-head Attention

Some 
transformation

Concatenation
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Q = I WQ

K = I WK

V = I WV

O = A′￼ V

Recall the Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′￼, A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′￼ = softmax(A)

A = Q KT



Multi-head Attention in Matrices

Lecture 5: Attention & Transformers46

• Multiple attention “heads” can be defined via multiple  matrices 

• Let , where  is the number of attention heads, and  
ranges from 1 to . 

• Each attention head performs attention independently: 

•  

• Concatenating different  from different attention heads. 

• , where 

WQ, WK, WV

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h h l
h

Ol = softmax(I Wl
Q Wl

K
T IT) I Wl

V

Ol

O = [O1; . . . ; On] Y Y ∈ ℝd×d
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• Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two 
optimization tricks: 
• Residual connection (“Add”) 
• Layer normalization (“Norm”)
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Normalize by 
scalar mean and 
variance

Modulate by learned 
element-wise gain and 
bias

https://arxiv.org/abs/1607.06450


The Transformer Decoder

Lecture 5: Attention & Transformers54

Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r 

of
 e

nc
od

er
 b

lo
ck

s

Output Probabilities

Masked Multi-head 
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm



The Transformer Decoder

Lecture 5: Attention & Transformers54

Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r 

of
 e

nc
od

er
 b

lo
ck

s• The Transformer Decoder is a stack 
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• Masked Multi-head Self-attention 
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• The Transformer Decoder 
constrains to unidirectional 
context, as for language 
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• What if we want bidirectional 
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self-attention.

Output Probabilities

Multi-head 
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm



The Transformer Encoder

Lecture 5: Attention & Transformers55

Encoder Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r 

of
 e

nc
od

er
 b

lo
ck

s

• The Transformer Decoder 
constrains to unidirectional 
context, as for language 
models. 

• What if we want bidirectional 
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we remove the masking in 
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• More on Encoder-Decoder models will be 
introduced in future lectures! 

• Right now we only need to know that it processes 
the source sentence with a bidirectional model 
(Encoder) and generates the target with a 
unidirectional model (Decoder). 

• The Transformer Decoder is modified to perform 
cross-attention to the output of the Encoder. w1, . . . , wt1

wt1+1, . . . , wt2

wt1+2, . . .
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Cross-Attention Details 
• Self-attention: queries, keys, and values come from the same source.
• Cross-Attention: keys and values are from Encoder (like a memory); 

queries are from Decoder.
• Let  be output vectors from the Transformer encoder, .

• Let  be input vectors from the Transformer decoder, .
• Keys and values from the encoder:

•
•

• Queries are drawn from the decoder:

•

h1, …, h𝑛 hi ∈ ℝd

𝑧1, …,  𝑧𝑛 zi ∈ ℝd

ki = WK hi
vi = WV hi

qi = WQ zi
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The Revolutionary Impact of Transformers

• Since Transformer has been popularized in 
language applications, computer vision 
also adapted Transformers, e.g., Vision 
Transformers.

[Khan et al., 2021]

• Almost all current-day leading language models use Transformer building blocks.

• E.g., GPT1/2/3/4, T5, Llama 1/2, BERT, … almost anything we can name

• Transformer-based models dominate nearly all NLP leaderboards.

https://arxiv.org/pdf/2101.01169.pdf
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• Since Transformer has been popularized in 
language applications, computer vision 
also adapted Transformers, e.g., Vision 
Transformers.

[Khan et al., 2021]

• Almost all current-day leading language models use Transformer building blocks.

• E.g., GPT1/2/3/4, T5, Llama 1/2, BERT, … almost anything we can name

• Transformer-based models dominate nearly all NLP leaderboards.

What’s next after 
Transformers?

https://arxiv.org/pdf/2101.01169.pdf

