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e However, there’s the vanishing gradient
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Drawbacks of RNNs: Lack of Parallelizability

* Forward and backward passes have O(sequence length) unparallelizable
operations

* GPUs can perform many independent computations (like addition) at once!

 But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed.

* Training and inference are slow; inhibits on very large datasets!

}}E—... - ..._._
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Numbers indicate min # of steps before a state can be computed




Drawbacks of RNNs

e Complicated memory and gating structures
e Backprop through time can’t be parallelized

* |s linear order always the most important
structure to model?! (No, but people do
incremental interpretation.)

* |nstead, let’s learn which parts of the context
to pay attention to



Building the Intuition of Attention

Attention treats each token’s representation as a query to access and incorporate
information from a set of values.

* Joday we look at attention within a single sequence.
Number of unparallelizable operations does NOT increase with sequence length.
e Maximum interaction distance: O(l), since all tokens interact at every layer!
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Attention Is All You Need (NeurlPS 2017)
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Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys In attention, the matches all keys softly, to

that map to values. The matches a weig
one of the keys, returning its value. multip

keys values

a vl

b V2

query query

nt between O and 1. The keys' values are

ied by the weights and summed.

keys values Weighted
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k1 vl
k2 V2
output
k3 V3 ) —
k4 v4

k5 v5



Self-Attention: Basic Concepts iwviousios

cat
Each vector receives three representations (“roles”) o e
WQ| w [o] =|o|  Query: vector from which
i ;] W & theattentionislooking
“"Hey there, do you have this information?”

.
ah
N A
-

] _[°] Key:vectoratwhich the query
Wl X [o
i ] & : looks to compute weights

a

o ] " I T 1‘*' 2 AV » 4 l—" M c a ':‘ '2ad aalVla ’n"' 1 ™ M - i \/D 2 BN - 2 b ade Vo L\ AT IS i ~ PN A 44
Hi, I have This Informarion - qive me a la ge wel lqﬂ T

Value: their weighted sum is
attention output

H
<
X
[0 o o}
|
EXeXe)

“"Heres the information I have!”

! (R N |
BUAENT KOTHO HA MaTe <eos>
"T" "saw" "cat” "on”" "mat”


https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Basic Concepts (wviusos

cat

Query: asking for D s D
Fach vector receives & nformation

WAl X giFvector Trofmw
Q . .
_ e attentionis looking

“"Hey there, do you have this information?”

~ self-attention |

|
oo o

Key: vector at which the query

X -
O looks to compute weights

!
[0 © o]
1
l! ) | I

"Hi, I have this information - give me a large weight!”

i

“"Heres the information I have!”

. .

I
—>ooc~|<[

Value: their weighted sum is
attention output

|
[c © 0]

[© © O]

L S
g BWAEST KOTHO HA MATEe <eps>

" W "

"T" ‘“saw cat" “on”" "mat


https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Basic Concepts iwviusos

cat
Query: asking for D S D
Fach vector receives t "formation o

~ self-attention |

. O
WQXE

|
oo o

| m "
_ ) I =1 B =5 Jgoks to compute weights T
A

0] 0 , : - . —
X |o| =[e Value..thelrwelghted sumiis t:j
I | 1 o) attention output O '
“"Heres the information I have!” -X[
O
O
Q

9 BUaen KOTHO HG MaATe <eos>
"T" T“saw” “cat” "on" "mat”


https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Basic Concepts iwviusos

cat

~ self-attention |

Query: asking for D
information

QOO

Each vector receives &

- O
Wng

|
oo o

-
-
l...
-
-...
‘op
a..

B
~
X
[0 © o]
|
[0 © O]

“Hi, I have this informg Value: giving the
i - information

© O O BICNEIE

WV X o] =|o O oflel |ollo
L) B 1) O oJle) 1o)leo

"Heres the information I have!” y !XZ v
O O Q

o o 0

O O O

5 BUAEN KOTHO HGQ MATE <eos>

" W 1) " ]

"T" "saw” “cat” "on mat"”


https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Walk-through




Self-Attention: Walk-through

Can be either input or a hidden layer



Self-Attention: Walk-through

: Howrelevantare a,,a;,a,to a;?



Self-Attention: Walk-through

: Howrelevantare a,,a;,a,to a;?

We denote the level

of relevance as o
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How to compute ?

Cf. encoder-decoder w/
attention, q is the decoder hidden 4
istate and k is the encoder hidden‘

state.

W, . ¢/Q

a, a,

We'll use this! 4! 27

Method 1 (most common): Dot product Method 2: Additive
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Use attention scores to extract information
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Use attention scores to extract information
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Cf. encoder-decoder w/attention, v is just
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Use attention scores to extract information
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Repeat the same calculation for all . to obtain b,

b, = Z @i Vi
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Parallelize the computation!
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Parallelize the computation!
Weighted Sum of Values with Attention Scores
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T he Matrices Form of Self-Attention
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Self-Attention: Summary

Let wy., be a sequence of words in vocabulary V, like Steve Jobs founded Apple.

For each w;, let a; = Ew,, where E € R*!V is an embedding matrix.

Rd)(d

1. Transform each word embedding with weight matrices Wo, Wk, Wy, each in
q; = Wo a; (queries) k.= Wy a; (keys) v. = Wy a; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

/ € ai’j

a..:k.q. aij: .
l,] ] 1l ’ e
2,

3. Compute output for each word as weighted sum of values

b= ) a,v,
j
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No Sequence Order — Position Embedding

 All tokens in an input sequence are simultaneously fed into self-
attention blocks. Thus, there’s no difference between tokens at different
positions.

* How do we bring the position info back, just like in RNNs?
We lose the position info!
d

Representing each sequence index as a vector: p € R
fori € {1,...,n}

e Justadd the p; to the input:a. = a, + p; W
 where g, is the embedding of the word at index 1.
+

* We can also concatenate a; and p;, but more commonly we add them.

* How to incorporate the position info into the self-attention blocks?

* |n deep self-attention networks, we do this at the first layer.
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Position Representation Vectors via
Sinusoids

Sinusoidal Position Representations (from the original Transformer
paper): concatenate sinusoidal functions of varying periods.

i
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d
COS(i/100002*7/d) Index in the sequence
\_ % https://timodenk.com/blog/linear-relationships-in-the-transtformers-positional-encoding/

2 e Periodicity indicates that maybe ‘“absolute position” isn’t as important
U e Maybe can extrapolate to longer sequences as periods restart!

o ® Not learnable; also the extrapolation doesn’t really work!
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Learnable Position Representation Vectors

Learned absolute position representations: p; contains learnable parameters.
dX

e Learn a matrix p € R“", and let each p; be a column of that matrix

e Most systems use this method.

A

U ¢ Flexibility: each position gets to be learned to fit the data

\) ° Cannot extrapolate to indices outside 1.....,n.

Sometimes people try more flexible representations of position:
¢ Relative linear position attention [Shaw et al., 2018]
e Dependency syntax-based position [Wang et al., 2019]



https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf
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nonlinearities in self-attention; stacking
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No Nonlinearities — Add Feed-forward
Networks

T here are no element-wise

nonlinearities in self-attention; stacking
more self-attention layers just re-

averages value vectors. Self-Attention

b,

Easy Fix: add a feed-forward network to

o post-process each output vector. FF

Self-Attention
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In decoders (language modeling,
producing the next word given
previous context), we need to
ensure we don’t peek at the

future.
At every time-step, we could

change the set of keys and
queries to include only past
words. (Inefficient!)

® To enable parallelization, we
mask out attention to future
words by setting attention scores

tO — 0.

We can look at these (not
greyed out) words
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Now We Put Things Together o

Probabilities

e Self-attention

® The basic computation
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¢ Positional Encoding
¢ Specify the sequence order
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Masked Self-Attention

® Nonlinearities

¢ Adding a feed-forward network at the
output of the self-attention block Block
Masking |
e Parallelize operations (looking at all + _|:
Input Embeddings

T

Inputs

Repeat for number
of encoder blocks

tokens) while not leaking info from the
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Why Multi-head Attention?

What if we want to look in
multiple places in the

2 o
sentence at once: Instead of having only one

attention head, we can create

multiple sets of (queries, keys,
values) independent from each
other!
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Recall the Matrices Form of Self-Attention

0=1W, I={ay,..., a,} € R™4 where a; € R
K=1 WK WQ’ WK’ WV = RdXd

V=IW, 0,K,VeR™

A=0K"

A=1W,U WK)T:IWQ W%IT —|: A,A € R™n
A = softmax(A)

O=AYV —|: 0 € R™



Multi-head Attention in Matrices

e Multiple attention “heads” can be defined via multiple Wo, Wi, Wy, matrices

o Let Wé, WIZ{, W‘l, e | dx%, where /: is the number of attention heads, and /
ranges from 1 to /.

e Each attention head performs attention independently:
e O' = softmax(I W, W, I") W),

e Concatenating different O’ from different attention heads.
e O=[0!...:0"Y, whereY € R
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Multi-head Attention is Computationally Efficient

e Even though we compute /# many attention heads, it's not more costly.

e We compute / W, € R, and then reshape to R<IXG
¢ Likewise for/ W, and I W,.

e Then we transpose to R™%5» now the head axis is like a batch axis.

o Almost everything else is identical. All we need to do is to reshape the
tensors!
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nxhx%

e We compute / W, € R and then reshape to |
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e Because of this, inputs to the softmax function can be large, making the gradients
small.
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Scaled Dot Product [Vaswani et al., 2017]

“Scaled Dot Product” attention aids in training.

When dimensionality d becomes large, dot products between vectors tend to
become large.

e Because of this, inputs to the softmax function can be large, making the gradients
small.

Instead of the self-attention function
we've seen:

T
o O'=softmax(I W, Wi I") I W, I Wy, Wy

We divide the attention scores by \/d/#h, to \/d/h
stop the scores from becoming large just as a

function of d// (the dimensionality divided by the
number of heads).

0! = softmax(
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The Transformer Decoder

* Now that we've replaced self-
attention with multi-head self-
attention, we'll go through two
optimization tricks:
® Residual connection (“Add”)

® [Layer normalization (“Norm™”)

Feed-Forward

Masked Multi-head
Attention

Repeat for number
of encoder blocks

il
Input Embeddings

T

Inputs
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Residual Connections [Heetal,2016]

® Residual connections are a trick to help models train better.

¢ Instead of X\ = Layer(X"" V) (where i represents the layer)

—1 l

e We let X = XD 4 Layer(X“~V) (so we only have to learn “the residual”
from the previous layer)

e Gradient is great through the residual
connection; it's 1!

XD

[no residuals] [residuals]

¢ Bias towards the identity function! [Loss landscape visualization,
Li etal., 2018, on a ResNet]
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Layer Normalization [Baetal,20i6]

e Layer normalization is a trick to help models train faster.

¢ |dea: cut down on uninformative variation in hidden vector values by normalizing to unit
mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

o Letx € Rd be an individual (word) vector in the model.

Let i = Z x ;; this is the mean; u € R.

2
Z (xj — ,u) ; this is the standard deviation; o € R.
j=1

. Leta=\é

¢ Lety € RYand f € R?be learned “gain” and “bias” parameters. (Can omit!)

¢ Then layer normalization computes:

x —
o Output = A Y+ p Modulate by learned

scalar mean and /’ '\ element-wise gain and

variance bias

Normalize by
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The Transformer Decoder

A

e The Transformer Decoder is a stack

of Transformer Decoder Blocks. g g
e Each Block consists of: g 5

e Masked Multi-head Self-attention 5 §

¢ Add & Norm &

® Feed-Forward

e Add & Norm

il
Input Embeddings
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context, as for language
models.
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context, like in a bidirectional
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— the ONLY difference is that

we remove the masking in + —|:
self-attention.

Repeat for number
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The Transformer =ncoder

® The Transformer Decoder
constrains to unidirectional
context, as for language
models.

e What if we want bidirectional

context, like in a bidirectional
RNN?

e We use Transformer Encoder
— the ONLY difference is that
we remove the masking in
self-attention.

Repeat for number
of encoder blocks

Multi-heac
Attention

Block

No masks! N |:
Input Embeddings

Encoder Inputs
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The Transformer =-Decoder

¢ More on Encoder-Decoder models will be Wi 125+ - -
introduced in future lectures!

¢ Right now we only need to know that it processes ’%ﬁ
the source sentence with a bidirectional model

( ) and generates the target with a
unidirectional model (Decoder). W

® The Transformer Decoder is modified to perform
cross-attention to the output of the Encoder. Wi e Wy,



Cross-Attention

5« Norm

Multi-head

Attention

Block

+{—

Encoder Inputs

Masked Multi-head
Attention

5 Norm

Masked Multi-head
Attention

Block

+{—

Decoder Inputs

Output Probabilities
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Cross-Attention Details

e Self-attention: queries, keys, and values come from the same source.

e Cross-Attention: keys and values are from (like a memory);
queries are from Decoder.

e Let /1, ..., 1, be output vectors from the Transformer , h, € 1
e Let Z,,..., Z, be input vectors from the Transformer decoder, 7; € | d
¢ Keys and values from the :

o k= Wg h,

o v, =Wy h

¢ Queries are drawn from the decoder:
e q;=Wopz



The Revolutionary Impact of Transformers

 Almost all current-day leading language models use Transformer building blocks.
e Eg,GPTI1/2/3/4,T5,Llama 1/2, BERT, ... almost anything we can name
* Transformer-based models dominate nearly all NLP leaderboards.

wK

* Since Transformer has been popularized in v [0 TP[ Acertion
language applications, computer vision W’L 'E' « [ S+ [t
also adapted Transformers, e.g., Vision TN\ e o
Transformers. v e

[Khan et al., 2021]
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* Since Transformer has been popularized in s T e
° ° o o ] *  Softmax elf-attended
language applications, computer vision h*ﬁ Mo g f : B? - reae s
o o N ' YH I '
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What's next after

Transformers?
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