
Sequence Data,
Recurrent Models &

Attention

CS6120: Natural Language Processing
Northeastern University

David Smith
some slides from Jurafsky & Martin and Hashimoto

Back to Language Modeling

Evaluating LMs

• Shannon: Make same predictions (and
mistakes!) as humans (also cogsci)

• Turing: Generate text similar to humans

• Extrinsic: Help other NLP tasks

• Intrinsic: Assign high probability to
correct predictions

Evaluating LMs

ℓ(wM
1) = −

M

∑
i=1

log p(wi ∣ wi−1
1)

Perplexity(wM
1) = 2

ℓ(wM
1)

M

Negative log likelihood
Cross entropy

Perplexity
NB: per token,
comparable across
test sets

Evaluating LMs

• A standard benchmark uses 10,000 word V
on 1M tokens of the Penn Treebank (WSJ
1987-89), perplexities of

• 141: smoothed 5-gram

• ~60–80: LSTMs and variants

• ~35–55: Transformers and similar (2019–)

• Compare to vocabulary size

Evaluating LMs

• What is perplexity if …

• a “perfect” language models assigns
probability 1 to w ?

• an (unsmoothed) language model assigns
probability 0 to w ?

• an overly smoothed language model

assigns all tokens probability ?
1
V

Out-of-Vocabulary (OOV)

• Closed vocabulary: Set V on training, use
UNK for everything else

• Model trained on 1995-2003 data will have
a hard time with 2017 data

• Character and character-token mixed
models, morpheme or word-piece models
(more about this later)

6.5. OUT-OF-VOCABULARY WORDS 153

6.5 Out-of-vocabulary words3341

So far, we have assumed a closed-vocabulary setting — the vocabulary V is assumed to be3342

a finite set. In realistic application scenarios, this assumption may not hold. Consider, for3343

example, the problem of translating newspaper articles. The following sentence appeared3344

in a Reuters article on January 6, 2017:53345

The report said U.S. intelligence agencies believe Russian military intelligence,3346

the GRU, used intermediaries such as WikiLeaks, DCLeaks.com and the Guc-3347

cifer 2.0 ”persona” to release emails...3348

Suppose that you trained a language model on the Gigaword corpus,6 which was released3349

in 2003. The bolded terms either did not exist at this date, or were not widely known; they3350

are unlikely to be in the vocabulary. The same problem can occur for a variety of other3351

terms: new technologies, previously unknown individuals, new words (e.g., hashtag), and3352

numbers.3353

One solution is to simply mark all such terms with a special token, hUNKi. While3354

training the language model, we decide in advance on the vocabulary (often the K most3355

common terms), and mark all other terms in the training data as hUNKi. If we do not want3356

to determine the vocabulary size in advance, an alternative approach is to simply mark3357

the first occurrence of each word type as hUNKi.3358

But is often better to make distinctions about the likelihood of various unknown words.3359

This is particularly important in languages that have rich morphological systems, with3360

many inflections for each word. For example, Portuguese is only moderately complex3361

from a morphological perspective, yet each verb has dozens of inflected forms (see Fig-3362

ure 4.3b). In such languages, there will be many word types that we do not encounter in a3363

corpus, which are nonetheless predictable from the morphological rules of the language.3364

To use a somewhat contrived English example, if transfenestrate is in the vocabulary, our3365

language model should assign a non-zero probability to the past tense transfenestrated,3366

even if it does not appear in the training data.3367

One way to accomplish this is to supplement word-level language models with character-3368

level language models. Such models can use n-grams or RNNs, but with a fixed vocab-3369

ulary equal to the set of ASCII or Unicode characters. For example Ling et al. (2015)3370

propose an LSTM model over characters, and Kim (2014) employ a convolutional neural3371

network (LeCun and Bengio, 1995). A more linguistically motivated approach is to seg-3372

ment words into meaningful subword units, known as morphemes (see chapter 9). For3373

5Bayoumy, Y. and Strobel, W. (2017, January 6). U.S. intel report: Putin directed cy-
ber campaign to help Trump. Reuters. Retrieved from http://www.reuters.com/article/
us-usa-russia-cyber-idUSKBN14Q1T8 on January 7, 2017.

6https://catalog.ldc.upenn.edu/LDC2003T05

Under contract with MIT Press, shared under CC-BY-NC-ND license.

Markov (n-gram) Models

• Markov assumption: for history length

•

• Pad sequence beginning and end, e.g. bigram

h

p(wN
1) ≈

N

∏
i=1

p(wi ∣ wi−1
i−h)

140 CHAPTER 6. LANGUAGE MODELS

To solve this problem, n-gram models make a crucial simplifying approximation: con-
dition on only the past n � 1 words.

p(wm | wm�1 . . . w1) ⇡p(wm | wm�1, . . . , wm�n+1) [6.9]

This means that the probability of a sentence w can be approximated as

p(w1, . . . , wM) ⇡

MY

m=1

p(wm | wm�1, . . . , wm�n+1) [6.10]

To compute the probability of an entire sentence, it is convenient to pad the beginning
and end with special symbols ⇤ and ⌅. Then the bigram (n = 2) approximation to the
probability of I like black coffee is:

p(I like black coffee) = p(I | ⇤) ⇥ p(like | I) ⇥ p(black | like) ⇥ p(coffee | black) ⇥ p(⌅ | coffee).
[6.11]

This model requires estimating and storing the probability of only V n events, which is3087

exponential in the order of the n-gram, and not V M , which is exponential in the length of3088

the sentence. The n-gram probabilities can be computed by relative frequency estimation,3089

p(wm | wm�1, wm�2) =
count(wm�2, wm�1, wm)P
w0 count(wm�2, wm�1, w0)

[6.12]

The hyperparameter n controls the size of the context used in each conditional proba-3090

bility. If this is misspecified, the language model will perform poorly. Let’s consider the3091

potential problems concretely.3092

When n is too small. Consider the following sentences:3093

(6.3) Gorillas always like to groom their friends.3094

(6.4) The computer that’s on the 3rd floor of our office building crashed.3095

In each example, the bolded words depend on each other: the likelihood of their3096

depends on knowing that gorillas is plural, and the likelihood of crashed depends on3097

knowing that the subject is a computer. If the n-grams are not big enough to capture3098

this context, then the resulting language model would offer probabilities that are too3099

low for these sentences, and too high for sentences that fail basic linguistic tests like3100

number agreement.3101

When n is too big. In this case, it is hard good estimates of the n-gram parameters from3102

our dataset, because of data sparsity. To handle the gorilla example, it is necessary to3103

model 6-grams, which means accounting for V 6 events. Under a very small vocab-3104

ulary of V = 104, this means estimating the probability of 1024 distinct events.3105

Jacob Eisenstein. Draft of June 20, 2018.

Markov (n-gram) Models
• Remember the confusing terminology

• Unigram = 0th order

•
• = naive Bayes

• Bigram = 1st order

•
• Trigram = 2nd order

•

p(wi ∣ wi−1
1) ≈ p(wi)

p(wi ∣ wi−1
1 , class) ≈ p(wi ∣ class)

p(wi ∣ wi−1
1) ≈ p(wi ∣ wi−1)

p(wi ∣ wi−1
1) ≈ p(wi ∣ wi−2, wi−1) = p(wi ∣ wi−1

i−2)

What’s wrong with n-grams?
• n-grams are too narrow

• Gorillas always like to groom their friends.

• The computer that’s on the 3rd floor of our office building crashed.

• n-grams are too wide

• To get gorillas and their in the same context, we
need 6-grams (params)

• And the computer example needs more

• Markov models are finite-state and English grammar is
at least context-free (as we recently discussed)

V6

What’s wrong with n-grams?

• Rather than growing n or adding a stack
(for context-free grammar), let’s learn what
to encode in a fixed-size memory about the
history.

• We started from the chain rule

• p(wM
1) = p(w1)p(w2 ∣ w1)⋯p(wi ∣ wi−1

1)⋯

LM as Classification

• We started from the chain rule

•
• Factoring joint probability as an

autoregressive process

• Consider in isolation for some
context summarizing the history

p(wM
1) = p(w1)p(w2 ∣ w1)⋯p(wi ∣ wi−1

1)⋯

p(w ∣ u)
u

LM as Classification

• Consider in isolation

• For and let

• Predict word w/discriminative classifier

p(w ∣ u)

βw ∈ ℝK vu ∈ ℝK

p(w ∣ u) =
exp(βw ⋅ vu)

∑w′￼∈𝒱 exp(βw′￼
⋅ vu)

p(⋅ ∣ u) = SoftMax([β1 ⋅ vu, β2 ⋅ vu, …, βV ⋅ vu])

Recurrent Neural Networks
6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

146 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

6.3 Recurrent neural network language models3190

N -gram language models have been largely supplanted by neural networks. These mod-3191

els do not make the n-gram assumption of restricted context; indeed, they can incorporate3192

arbitrarily distant contextual information, while remaining computationally and statisti-3193

cally tractable.3194

The first insight behind neural language models is to treat word prediction as a dis-3195

criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is3196

a word, and u is the context, which depends on the previous words. Rather than directly3197

estimating the word probabilities from (smoothed) relative frequencies, we can treat treat3198

language modeling as a machine learning problem, and estimate parameters that maxi-3199

mize the log conditional probability of a corpus.3200

The second insight is to reparametrize the probability distribution p(w | u) as a func-3201

tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,3202

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.26]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-3203

ability distribution is properly normalized. This vector of probabilities is equivalent to3204

applying the softmax transformation (see § 3.1) to the vector of dot-products,3205

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.27]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of June 20, 2018.

Elman (1990) unit

Recurrent Neural Networks
6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

146 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

6.3 Recurrent neural network language models3190

N -gram language models have been largely supplanted by neural networks. These mod-3191

els do not make the n-gram assumption of restricted context; indeed, they can incorporate3192

arbitrarily distant contextual information, while remaining computationally and statisti-3193

cally tractable.3194

The first insight behind neural language models is to treat word prediction as a dis-3195

criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is3196

a word, and u is the context, which depends on the previous words. Rather than directly3197

estimating the word probabilities from (smoothed) relative frequencies, we can treat treat3198

language modeling as a machine learning problem, and estimate parameters that maxi-3199

mize the log conditional probability of a corpus.3200

The second insight is to reparametrize the probability distribution p(w | u) as a func-3201

tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,3202

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.26]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-3203

ability distribution is properly normalized. This vector of probabilities is equivalent to3204

applying the softmax transformation (see § 3.1) to the vector of dot-products,3205

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.27]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of June 20, 2018.

Elman (1990) unit

Encoding
lookup layer

Recurrent Neural Networks
6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

146 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

6.3 Recurrent neural network language models3190

N -gram language models have been largely supplanted by neural networks. These mod-3191

els do not make the n-gram assumption of restricted context; indeed, they can incorporate3192

arbitrarily distant contextual information, while remaining computationally and statisti-3193

cally tractable.3194

The first insight behind neural language models is to treat word prediction as a dis-3195

criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is3196

a word, and u is the context, which depends on the previous words. Rather than directly3197

estimating the word probabilities from (smoothed) relative frequencies, we can treat treat3198

language modeling as a machine learning problem, and estimate parameters that maxi-3199

mize the log conditional probability of a corpus.3200

The second insight is to reparametrize the probability distribution p(w | u) as a func-3201

tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,3202

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.26]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-3203

ability distribution is properly normalized. This vector of probabilities is equivalent to3204

applying the softmax transformation (see § 3.1) to the vector of dot-products,3205

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.27]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of June 20, 2018.

Elman (1990) unit

Encoding
lookup layer

Recurrent unit

Recurrent Neural Networks
6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

146 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

6.3 Recurrent neural network language models3190

N -gram language models have been largely supplanted by neural networks. These mod-3191

els do not make the n-gram assumption of restricted context; indeed, they can incorporate3192

arbitrarily distant contextual information, while remaining computationally and statisti-3193

cally tractable.3194

The first insight behind neural language models is to treat word prediction as a dis-3195

criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is3196

a word, and u is the context, which depends on the previous words. Rather than directly3197

estimating the word probabilities from (smoothed) relative frequencies, we can treat treat3198

language modeling as a machine learning problem, and estimate parameters that maxi-3199

mize the log conditional probability of a corpus.3200

The second insight is to reparametrize the probability distribution p(w | u) as a func-3201

tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,3202

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.26]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-3203

ability distribution is properly normalized. This vector of probabilities is equivalent to3204

applying the softmax transformation (see § 3.1) to the vector of dot-products,3205

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.27]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of June 20, 2018.

Elman (1990) unit

Encoding
lookup layer

Recurrent unit

Output

Recurrent Neural Networks
6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

146 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

6.3 Recurrent neural network language models3190

N -gram language models have been largely supplanted by neural networks. These mod-3191

els do not make the n-gram assumption of restricted context; indeed, they can incorporate3192

arbitrarily distant contextual information, while remaining computationally and statisti-3193

cally tractable.3194

The first insight behind neural language models is to treat word prediction as a dis-3195

criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is3196

a word, and u is the context, which depends on the previous words. Rather than directly3197

estimating the word probabilities from (smoothed) relative frequencies, we can treat treat3198

language modeling as a machine learning problem, and estimate parameters that maxi-3199

mize the log conditional probability of a corpus.3200

The second insight is to reparametrize the probability distribution p(w | u) as a func-3201

tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,3202

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.26]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-3203

ability distribution is properly normalized. This vector of probabilities is equivalent to3204

applying the softmax transformation (see § 3.1) to the vector of dot-products,3205

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.27]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of June 20, 2018.

Elman (1990) unit

Encoding
lookup layer

Recurrent unit

Output

Random variables
(observed in text)

Recurrent Neural Networks
6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

146 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

6.3 Recurrent neural network language models3190

N -gram language models have been largely supplanted by neural networks. These mod-3191

els do not make the n-gram assumption of restricted context; indeed, they can incorporate3192

arbitrarily distant contextual information, while remaining computationally and statisti-3193

cally tractable.3194

The first insight behind neural language models is to treat word prediction as a dis-3195

criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is3196

a word, and u is the context, which depends on the previous words. Rather than directly3197

estimating the word probabilities from (smoothed) relative frequencies, we can treat treat3198

language modeling as a machine learning problem, and estimate parameters that maxi-3199

mize the log conditional probability of a corpus.3200

The second insight is to reparametrize the probability distribution p(w | u) as a func-3201

tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,3202

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.26]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-3203

ability distribution is properly normalized. This vector of probabilities is equivalent to3204

applying the softmax transformation (see § 3.1) to the vector of dot-products,3205

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.27]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of June 20, 2018.

Elman (1990) unit

Encoding
lookup layer

Recurrent unit

Output

Random variables
(observed in text)

Sigmoid, tanh,
ReLU,…

Recurrent Neural Networks
6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

146 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

6.3 Recurrent neural network language models3190

N -gram language models have been largely supplanted by neural networks. These mod-3191

els do not make the n-gram assumption of restricted context; indeed, they can incorporate3192

arbitrarily distant contextual information, while remaining computationally and statisti-3193

cally tractable.3194

The first insight behind neural language models is to treat word prediction as a dis-3195

criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is3196

a word, and u is the context, which depends on the previous words. Rather than directly3197

estimating the word probabilities from (smoothed) relative frequencies, we can treat treat3198

language modeling as a machine learning problem, and estimate parameters that maxi-3199

mize the log conditional probability of a corpus.3200

The second insight is to reparametrize the probability distribution p(w | u) as a func-3201

tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,3202

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.26]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-3203

ability distribution is properly normalized. This vector of probabilities is equivalent to3204

applying the softmax transformation (see § 3.1) to the vector of dot-products,3205

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.27]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of June 20, 2018.

Elman (1990) unit

Encoding
lookup layer

Recurrent unit

Output

Random variables
(observed in text)

Sigmoid, tanh,
ReLU,…

K-dimensional hidden
representation

Recurrent Neural Networks
6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

6.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 147

but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let hm represent the contextual information at position m
in the sequence. RNN language models are defined,

xm ,�wm [6.28]
hm =RNN(xm,hm�1) [6.29]

p(wm+1 | w1, w2, . . . , wm) =
exp(�wm+1 · hm)P
w02V exp(�w0 · hm)

, [6.30]

where � is a matrix of input word embeddings, and xm denotes the embedding for word3206

wm. The conversion of wm to xm is sometimes known as a lookup layer, because we3207

simply lookup the embeddings for each word in a table; see § 3.2.4.3208

The Elman unit defines a simple recurrent operation (Elman, 1990),3209

RNN(xm,hm�1) , g(⇥hm�1 + xm), [6.31]

where ⇥ 2 RK⇥K is the recurrence matrix and g is a non-linear transformation function,3210

often defined as the elementwise hyperbolic tangent tanh (see § 3.1).3 The tanh acts as a3211

squashing function, ensuring that each element of hm is constrained to the range [�1, 1].3212

Although each wm depends on only the context vector hm�1, this vector is in turn3213

influenced by all previous tokens, w1, w2, . . . wm�1, through the recurrence operation: w13214

affects h1, which affects h2, and so on, until the information is propagated all the way to3215

hm�1, and then on to wm (see Figure 6.1). This is an important distinction from n-gram3216

language models, where any information outside the n-word window is ignored. In prin-3217

ciple, the RNN language model can handle long-range dependencies, such as number3218

agreement over long spans of text — although it would be difficult to know where exactly3219

in the vector hm this information is represented. The main limitation is that informa-3220

tion is attenuated by repeated application of the squashing function g. Long short-term3221

memories (LSTMs), described below, are a variant of RNNs that address this issue, us-3222

ing memory cells to propagate information through the sequence without applying non-3223

linearities (Hochreiter and Schmidhuber, 1997).3224

The denominator in Equation 6.30 is a computational bottleneck, because it involves3225

a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,3226

which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov3227

et al., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive3228

estimation (Gutmann and Hyvärinen, 2012), which learns by distinguishing observed in-3229

stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).3230

Both of these strategies are described in § 14.5.3.3231

3In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).

Under contract with MIT Press, shared under CC-BY-NC-ND license.

146 CHAPTER 6. LANGUAGE MODELS

h0 h1 h2 h3 · · ·

x1 x2 x3 · · ·

w1 w2 w3 · · ·

Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

6.3 Recurrent neural network language models3190

N -gram language models have been largely supplanted by neural networks. These mod-3191

els do not make the n-gram assumption of restricted context; indeed, they can incorporate3192

arbitrarily distant contextual information, while remaining computationally and statisti-3193

cally tractable.3194

The first insight behind neural language models is to treat word prediction as a dis-3195

criminative learning task.2 The goal is to compute the probability p(w | u), where w 2 V is3196

a word, and u is the context, which depends on the previous words. Rather than directly3197

estimating the word probabilities from (smoothed) relative frequencies, we can treat treat3198

language modeling as a machine learning problem, and estimate parameters that maxi-3199

mize the log conditional probability of a corpus.3200

The second insight is to reparametrize the probability distribution p(w | u) as a func-3201

tion of two dense K-dimensional numerical vectors, �w 2 RK , and vu 2 RK ,3202

p(w | u) =
exp(�w · vu)P

w02V exp(�w0 · vu)
, [6.26]

where �w · vu represents a dot product. As usual, the denominator ensures that the prob-3203

ability distribution is properly normalized. This vector of probabilities is equivalent to3204

applying the softmax transformation (see § 3.1) to the vector of dot-products,3205

p(· | u) = SoftMax([�1 · vu,�2 · vu, . . . ,�V · vu]). [6.27]

The word vectors �w are parameters of the model, and are estimated directly. The
context vectors vu can be computed in various ways, depending on the model. A simple

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).

Jacob Eisenstein. Draft of June 20, 2018.

Elman (1990) unit

Encoding
lookup layer

Recurrent unit

Output

Random variables
(observed in text)

Sigmoid, tanh,
ReLU,…

K-dimensional hidden
representation

Same at
every step =

recurrent

Θ

Recurrent Neural Networks

• input token embeddings

• output token parameters

• recurrence parameters

• initial hidden state

• Like the of n-grams, dimension
trades off bias and variance

ϕi ∈ ℝK

βi ∈ ℝK

Θ ∈ ℝK×K

h0 ∈ ℝK

n K ≪ V

Backprop through Time

Backprop through Time

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

Sentence loss
decomposes by

word

Backprop through Time

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

Sentence loss
decomposes by

word

Backprop through Time

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

Sentence loss
decomposes by

word

Cf. logistic
regression gradient

Backprop through Time

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

Sentence loss
decomposes by

word

Cf. logistic
regression gradient

Current
hidden state

depends on
multiple times

Θ

Backprop through Time

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

Sentence loss
decomposes by

word

Cf. logistic
regression gradient

Current
hidden state

depends on
multiple times

Θ

Backprop through Time

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

148 CHAPTER 6. LANGUAGE MODELS

6.3.1 Backpropagation through time3232

The recurrent neural network language model has the following parameters:3233

• �i 2 RK , the “input” word vectors (these are sometimes called word embeddings,3234

since each word is embedded in a K-dimensional space);3235

• �i 2 RK , the “output” word vectors;3236

• ⇥ 2 RK⇥K , the recurrence operator;3237

• h0, the initial state.3238

Each of these parameters can be estimated by formulating an objective function over the3239

training corpus, L(w), and then applying backpropagation to obtain gradients on the3240

parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates3241

can be computed from an online learning algorithm such as stochastic gradient descent3242

(see § 2.5.2).3243

The application of backpropagation to recurrent neural networks is known as back-3244

propagation through time, because the gradients on units at time m depend in turn on the3245

gradients of units at earlier times n < m. Let `m+1 represent the negative log-likelihood3246

of word m + 1,3247

`m+1 = � log p(wm+1 | w1, w2, . . . , wm). [6.32]

We require the gradient of this loss with respect to each parameter, such as ✓k,k0 , an indi-
vidual element in the recurrence matrix ⇥. Since the loss depends on the parameters only
through hm, we can apply the chain rule of differentiation,

@`m+1

@✓k,k0
=

@`m+1

@hm

@hm

@✓k,k0
. [6.33]

The vector hm depends on ⇥ in several ways. First, hm is computed by multiplying ⇥ by
the previous state hm�1. But the previous state hm�1 also depends on ⇥:

hm =g(xm,hm�1) [6.34]
@hm,k

@✓k,k0
=g0(xm,k + ✓k · hm�1)(hm�1,k0 + ✓k ·

@hm�1

@✓k,k0
), [6.35]

where g0 is the local derivative of the nonlinear function g. The key point in this equation3248

is that the derivative @hm
@✓k,k0

depends on @hm�1

@✓k,k0
, which will depend in turn on @hm�2

@✓k,k0
, and3249

so on, until reaching the initial state h0.3250

Each derivative @hm
@✓k,k0

will be reused many times: it appears in backpropagation from3251

the loss `m, but also in all subsequent losses `n>m. Neural network toolkits such as3252

Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary3253

Jacob Eisenstein. Draft of June 20, 2018.

Sentence loss
decomposes by

word

Cf. logistic
regression gradient

Current
hidden state

depends on
multiple times

Θ

Depends on
earlier gradients

Teacher Forcing
We always give the model the correct history to predict the next word (rather
than feeding the model the possible buggy guess from the prior time step).
This is called teacher forcing (in training we force the context to be correct
based on the gold words)
What teacher forcing looks like:
• At word position t
• the model takes as input the correct word wt together with ht−1, computes

a probability distribution over possible next words
• That gives loss for the next token wt+1
• Then we move on to next word, ignore what the model predicted for the

next word and instead use the correct word wt+1 along with the prior
history encoded to estimate the probability of token wt+2.

Activation Functions
64 CHAPTER 3. NONLINEAR CLASSIFICATION

Figure 3.2: The sigmoid, tanh, and ReLU activation functions

Now suppose that the hidden features z are never observed, even in the training data.
We can still construct the architecture in Figure 3.1. Instead of predicting y from a discrete
vector of predicted values z, we use the probabilities �(✓k · x). The resulting classifier is
barely changed:

z =�(⇥(x!z)x) [3.9]

p(y | x;⇥(z!y), b) = SoftMax(⇥(z!y)z + b). [3.10]

This defines a classification model that predicts the label y 2 Y from the base features x,1413

through a“hidden layer” z. This is a feedforward neural network.21414

3.2 Designing neural networks1415

This feedforward neural network can be generalized in a number of ways.1416

3.2.1 Activation functions1417

If the hidden layer is viewed as a set of latent features, then the sigmoid function repre-1418

sents the extent to which each of these features is “activated” by a given input. However,1419

the hidden layer can be regarded more generally as a nonlinear transformation of the in-1420

put. This opens the door to many other activation functions, some of which are shown in1421

Figure 3.2. At the moment, the choice of activation functions is more art than science, but1422

a few points can be made about the most popular varieties:1423

• The range of the sigmoid function is (0, 1). The bounded range ensures that a cas-1424

cade of sigmoid functions will not “blow up” to a huge output, and this is impor-1425

2The architecture is sometimes called a multilayer perceptron, but this is misleading, because each layer
is not a perceptron as defined in Algorithm 3.

Jacob Eisenstein. Draft of June 20, 2018.

Activation Functions
64 CHAPTER 3. NONLINEAR CLASSIFICATION

Figure 3.2: The sigmoid, tanh, and ReLU activation functions

Now suppose that the hidden features z are never observed, even in the training data.
We can still construct the architecture in Figure 3.1. Instead of predicting y from a discrete
vector of predicted values z, we use the probabilities �(✓k · x). The resulting classifier is
barely changed:

z =�(⇥(x!z)x) [3.9]

p(y | x;⇥(z!y), b) = SoftMax(⇥(z!y)z + b). [3.10]

This defines a classification model that predicts the label y 2 Y from the base features x,1413

through a“hidden layer” z. This is a feedforward neural network.21414

3.2 Designing neural networks1415

This feedforward neural network can be generalized in a number of ways.1416

3.2.1 Activation functions1417

If the hidden layer is viewed as a set of latent features, then the sigmoid function repre-1418

sents the extent to which each of these features is “activated” by a given input. However,1419

the hidden layer can be regarded more generally as a nonlinear transformation of the in-1420

put. This opens the door to many other activation functions, some of which are shown in1421

Figure 3.2. At the moment, the choice of activation functions is more art than science, but1422

a few points can be made about the most popular varieties:1423

• The range of the sigmoid function is (0, 1). The bounded range ensures that a cas-1424

cade of sigmoid functions will not “blow up” to a huge output, and this is impor-1425

2The architecture is sometimes called a multilayer perceptron, but this is misleading, because each layer
is not a perceptron as defined in Algorithm 3.

Jacob Eisenstein. Draft of June 20, 2018.

Vanishing gradients

Gated RNNs
150 CHAPTER 6. LANGUAGE MODELS

hm hm+1

om om+1

cm fm+1 cm+1

im im+1

c̃m c̃m+1

xm xm+1

Figure 6.2: The long short-term memory (LSTM) architecture. Gates are shown in boxes
with dotted edges. In an LSTM language model, each hm would be used to predict the
next word wm+1.

The gates are functions of the input and previous hidden state. They are computed
from elementwise sigmoid activations, �(x) = (1+exp(�x))�1, ensuring that their values
will be in the range [0, 1]. They can therefore be viewed as soft, differentiable logic gates.
The LSTM architecture is shown in Figure 6.2, and the complete update equations are:

fm+1 =�(⇥(h!f)hm + ⇥(x!f)xm+1 + bf) forget gate [6.36]

im+1 =�(⇥(h!i)hm + ⇥(x!i)xm+1 + bi) input gate [6.37]

c̃m+1 = tanh(⇥(h!c)hm + ⇥(w!c)xm+1) update candidate [6.38]
cm+1 =fm+1 � cm + im+1 � c̃m+1 memory cell update [6.39]

om+1 =�(⇥(h!o)hm + ⇥(x!o)xm+1 + bo) output gate [6.40]
hm+1 =om+1 � tanh(cm+1) output. [6.41]

The operator � is an elementwise (Hadamard) product. Each gate is controlled by a vec-3288

tor of weights, which parametrize the previous hidden state (e.g., ⇥(h!f)) and the current3289

input (e.g., ⇥(x!f)), plus a vector offset (e.g., bf). The overall operation can be infor-3290

mally summarized as (hm, cm) = LSTM(xm, (hm�1, cm�1)), with (hm, cm) representing3291

the LSTM state after reading token m.3292

The LSTM outperforms standard recurrent neural networks across a wide range of3293

problems. It was first used for language modeling by Sundermeyer et al. (2012), but can3294

be applied more generally: the vector hm can be treated as a complete representation of3295

Jacob Eisenstein. Draft of June 20, 2018.

150 CHAPTER 6. LANGUAGE MODELS

hm hm+1

om om+1

cm fm+1 cm+1

im im+1

c̃m c̃m+1

xm xm+1

Figure 6.2: The long short-term memory (LSTM) architecture. Gates are shown in boxes
with dotted edges. In an LSTM language model, each hm would be used to predict the
next word wm+1.

The gates are functions of the input and previous hidden state. They are computed
from elementwise sigmoid activations, �(x) = (1+exp(�x))�1, ensuring that their values
will be in the range [0, 1]. They can therefore be viewed as soft, differentiable logic gates.
The LSTM architecture is shown in Figure 6.2, and the complete update equations are:

fm+1 =�(⇥(h!f)hm + ⇥(x!f)xm+1 + bf) forget gate [6.36]

im+1 =�(⇥(h!i)hm + ⇥(x!i)xm+1 + bi) input gate [6.37]

c̃m+1 = tanh(⇥(h!c)hm + ⇥(w!c)xm+1) update candidate [6.38]
cm+1 =fm+1 � cm + im+1 � c̃m+1 memory cell update [6.39]

om+1 =�(⇥(h!o)hm + ⇥(x!o)xm+1 + bo) output gate [6.40]
hm+1 =om+1 � tanh(cm+1) output. [6.41]

The operator � is an elementwise (Hadamard) product. Each gate is controlled by a vec-3288

tor of weights, which parametrize the previous hidden state (e.g., ⇥(h!f)) and the current3289

input (e.g., ⇥(x!f)), plus a vector offset (e.g., bf). The overall operation can be infor-3290

mally summarized as (hm, cm) = LSTM(xm, (hm�1, cm�1)), with (hm, cm) representing3291

the LSTM state after reading token m.3292

The LSTM outperforms standard recurrent neural networks across a wide range of3293

problems. It was first used for language modeling by Sundermeyer et al. (2012), but can3294

be applied more generally: the vector hm can be treated as a complete representation of3295

Jacob Eisenstein. Draft of June 20, 2018.

Specifically, a long
short-term memory
(LSTM) network

Gated RNNs
150 CHAPTER 6. LANGUAGE MODELS

hm hm+1

om om+1

cm fm+1 cm+1

im im+1

c̃m c̃m+1

xm xm+1

Figure 6.2: The long short-term memory (LSTM) architecture. Gates are shown in boxes
with dotted edges. In an LSTM language model, each hm would be used to predict the
next word wm+1.

The gates are functions of the input and previous hidden state. They are computed
from elementwise sigmoid activations, �(x) = (1+exp(�x))�1, ensuring that their values
will be in the range [0, 1]. They can therefore be viewed as soft, differentiable logic gates.
The LSTM architecture is shown in Figure 6.2, and the complete update equations are:

fm+1 =�(⇥(h!f)hm + ⇥(x!f)xm+1 + bf) forget gate [6.36]

im+1 =�(⇥(h!i)hm + ⇥(x!i)xm+1 + bi) input gate [6.37]

c̃m+1 = tanh(⇥(h!c)hm + ⇥(w!c)xm+1) update candidate [6.38]
cm+1 =fm+1 � cm + im+1 � c̃m+1 memory cell update [6.39]

om+1 =�(⇥(h!o)hm + ⇥(x!o)xm+1 + bo) output gate [6.40]
hm+1 =om+1 � tanh(cm+1) output. [6.41]

The operator � is an elementwise (Hadamard) product. Each gate is controlled by a vec-3288

tor of weights, which parametrize the previous hidden state (e.g., ⇥(h!f)) and the current3289

input (e.g., ⇥(x!f)), plus a vector offset (e.g., bf). The overall operation can be infor-3290

mally summarized as (hm, cm) = LSTM(xm, (hm�1, cm�1)), with (hm, cm) representing3291

the LSTM state after reading token m.3292

The LSTM outperforms standard recurrent neural networks across a wide range of3293

problems. It was first used for language modeling by Sundermeyer et al. (2012), but can3294

be applied more generally: the vector hm can be treated as a complete representation of3295

Jacob Eisenstein. Draft of June 20, 2018.

150 CHAPTER 6. LANGUAGE MODELS

hm hm+1

om om+1

cm fm+1 cm+1

im im+1

c̃m c̃m+1

xm xm+1

Figure 6.2: The long short-term memory (LSTM) architecture. Gates are shown in boxes
with dotted edges. In an LSTM language model, each hm would be used to predict the
next word wm+1.

The gates are functions of the input and previous hidden state. They are computed
from elementwise sigmoid activations, �(x) = (1+exp(�x))�1, ensuring that their values
will be in the range [0, 1]. They can therefore be viewed as soft, differentiable logic gates.
The LSTM architecture is shown in Figure 6.2, and the complete update equations are:

fm+1 =�(⇥(h!f)hm + ⇥(x!f)xm+1 + bf) forget gate [6.36]

im+1 =�(⇥(h!i)hm + ⇥(x!i)xm+1 + bi) input gate [6.37]

c̃m+1 = tanh(⇥(h!c)hm + ⇥(w!c)xm+1) update candidate [6.38]
cm+1 =fm+1 � cm + im+1 � c̃m+1 memory cell update [6.39]

om+1 =�(⇥(h!o)hm + ⇥(x!o)xm+1 + bo) output gate [6.40]
hm+1 =om+1 � tanh(cm+1) output. [6.41]

The operator � is an elementwise (Hadamard) product. Each gate is controlled by a vec-3288

tor of weights, which parametrize the previous hidden state (e.g., ⇥(h!f)) and the current3289

input (e.g., ⇥(x!f)), plus a vector offset (e.g., bf). The overall operation can be infor-3290

mally summarized as (hm, cm) = LSTM(xm, (hm�1, cm�1)), with (hm, cm) representing3291

the LSTM state after reading token m.3292

The LSTM outperforms standard recurrent neural networks across a wide range of3293

problems. It was first used for language modeling by Sundermeyer et al. (2012), but can3294

be applied more generally: the vector hm can be treated as a complete representation of3295

Jacob Eisenstein. Draft of June 20, 2018.

Specifically, a long
short-term memory
(LSTM) network

Not squashed

Gated RNNs
150 CHAPTER 6. LANGUAGE MODELS

hm hm+1

om om+1

cm fm+1 cm+1

im im+1

c̃m c̃m+1

xm xm+1

Figure 6.2: The long short-term memory (LSTM) architecture. Gates are shown in boxes
with dotted edges. In an LSTM language model, each hm would be used to predict the
next word wm+1.

The gates are functions of the input and previous hidden state. They are computed
from elementwise sigmoid activations, �(x) = (1+exp(�x))�1, ensuring that their values
will be in the range [0, 1]. They can therefore be viewed as soft, differentiable logic gates.
The LSTM architecture is shown in Figure 6.2, and the complete update equations are:

fm+1 =�(⇥(h!f)hm + ⇥(x!f)xm+1 + bf) forget gate [6.36]

im+1 =�(⇥(h!i)hm + ⇥(x!i)xm+1 + bi) input gate [6.37]

c̃m+1 = tanh(⇥(h!c)hm + ⇥(w!c)xm+1) update candidate [6.38]
cm+1 =fm+1 � cm + im+1 � c̃m+1 memory cell update [6.39]

om+1 =�(⇥(h!o)hm + ⇥(x!o)xm+1 + bo) output gate [6.40]
hm+1 =om+1 � tanh(cm+1) output. [6.41]

The operator � is an elementwise (Hadamard) product. Each gate is controlled by a vec-3288

tor of weights, which parametrize the previous hidden state (e.g., ⇥(h!f)) and the current3289

input (e.g., ⇥(x!f)), plus a vector offset (e.g., bf). The overall operation can be infor-3290

mally summarized as (hm, cm) = LSTM(xm, (hm�1, cm�1)), with (hm, cm) representing3291

the LSTM state after reading token m.3292

The LSTM outperforms standard recurrent neural networks across a wide range of3293

problems. It was first used for language modeling by Sundermeyer et al. (2012), but can3294

be applied more generally: the vector hm can be treated as a complete representation of3295

Jacob Eisenstein. Draft of June 20, 2018.

150 CHAPTER 6. LANGUAGE MODELS

hm hm+1

om om+1

cm fm+1 cm+1

im im+1

c̃m c̃m+1

xm xm+1

Figure 6.2: The long short-term memory (LSTM) architecture. Gates are shown in boxes
with dotted edges. In an LSTM language model, each hm would be used to predict the
next word wm+1.

The gates are functions of the input and previous hidden state. They are computed
from elementwise sigmoid activations, �(x) = (1+exp(�x))�1, ensuring that their values
will be in the range [0, 1]. They can therefore be viewed as soft, differentiable logic gates.
The LSTM architecture is shown in Figure 6.2, and the complete update equations are:

fm+1 =�(⇥(h!f)hm + ⇥(x!f)xm+1 + bf) forget gate [6.36]

im+1 =�(⇥(h!i)hm + ⇥(x!i)xm+1 + bi) input gate [6.37]

c̃m+1 = tanh(⇥(h!c)hm + ⇥(w!c)xm+1) update candidate [6.38]
cm+1 =fm+1 � cm + im+1 � c̃m+1 memory cell update [6.39]

om+1 =�(⇥(h!o)hm + ⇥(x!o)xm+1 + bo) output gate [6.40]
hm+1 =om+1 � tanh(cm+1) output. [6.41]

The operator � is an elementwise (Hadamard) product. Each gate is controlled by a vec-3288

tor of weights, which parametrize the previous hidden state (e.g., ⇥(h!f)) and the current3289

input (e.g., ⇥(x!f)), plus a vector offset (e.g., bf). The overall operation can be infor-3290

mally summarized as (hm, cm) = LSTM(xm, (hm�1, cm�1)), with (hm, cm) representing3291

the LSTM state after reading token m.3292

The LSTM outperforms standard recurrent neural networks across a wide range of3293

problems. It was first used for language modeling by Sundermeyer et al. (2012), but can3294

be applied more generally: the vector hm can be treated as a complete representation of3295

Jacob Eisenstein. Draft of June 20, 2018.

Specifically, a long
short-term memory
(LSTM) network

Not squashed

Lots more
parameters Θ

RNNs for Classification

RNNs for sequence labeling

Assign a label to each element of a sequence
Part-of-speech tagging

RNNs for sequence classification
Text classification

Instead of taking the last state, could use some pooling function of
all the output states, like mean pooling

Autoregressive generation

Stacked RNNs

Bidirectional RNNs

Bidirectional RNNs for classification

Encoder-Decoder RNNs
for Translation

Four architectures for NLP tasks with RNNs

Encoder-decoder

Translation by as encoder-decoder
En

co
de

r R
NN

Neural Machine Translation (NMT)

<START>

Source sentence (input)

il m’ a entarté

The sequence-to-sequence model
Target sentence (output)

Decoder RNN

Encoder RNN produces
an encoding of the
source sentence.

Encoding of the source sentence.
Provides initial hidden state

for Decoder RNN.

Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.

he

ar
gm

ax
he

ar
gm

ax

hit

hit

ar
gm

ax

me

Note: This diagram shows test time behavior: decoder
output is fed in as next step’s input

with a pie <END>

me with a pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

29

Sequence to sequence is everywhere!
Sequence-to-sequence is versatile!

• The general notion here is an encoder-decoder model
• One neural network takes input and produces a neural representation
• Another network produces output based on that neural representation
• If the input and output are sequences, we call it a seq2seq model

• Sequence-to-sequence is useful for more than just MT
• Many NLP tasks can be phrased as sequence-to-sequence:

• Summarization (long text → short text)
• Dialogue (previous utterances → next utterance)
• Parsing (input text → output parse as sequence)
• Code generation (natural language → Python code)

30

Neural Machine Translation (NMT)Neural Machine Translation (NMT)

• The sequence-to-sequence model is an example of a Conditional Language Model
• Language Model because the decoder is predicting the next word of the target sentence y
• Conditional because its predictions are also conditioned on the source sentence x

• NMT directly calculates :

• Question: How to train an NMT system?
• (Easy) Answer: Get a big parallel corpus…

• But there is now exciting work on “unsupervised NMT”, data augmentation, etc.

Probability of next target word, given
target words so far and source sentence x

31

Training an NMT System
Training a Neural Machine Translation system

En
co

de
r R

NN

Source sentence (from corpus)

<START> he hit me with a pieil m’ a entarté

Target sentence (from corpus)

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Decoder RNN

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4 ො𝑦5 ො𝑦6 ො𝑦7

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6 𝐽7

= negative log
prob of “he”

𝐽 =
1
𝑇

෍
𝑡=1

𝑇

𝐽𝑡 = + + + + + +

= negative log
prob of <END>

= negative log
prob of “with”

32

Multi-layer deep encoder-decoder MT net
Multi-layer deep encoder-decoder machine translation net

Die Proteste waren am Wochenende eskaliert <EOS> The protests escalated over the weekend

0.2
0.6

-0.1
-0.7
0.1

0.4
-0.6
0.2

-0.3
0.4

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1

-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.1
0.3

-0.1
-0.7
0.1

-0.2
0.6
0.1
0.3
0.1

-0.4
0.5

-0.5
0.4
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.2
-0.1
0.1
0.1

0.2
0.6

-0.1
-0.7
0.1

0.1
0.3

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.4
0.1

0.2
-0.8
-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
0.3
0.1

-0.1
0.6

-0.1
0.3
0.1

0.2
0.4

-0.1
0.2
0.1

0.3
0.6

-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.1
-0.1
-0.7
0.1

0.1
0.3
0.1

-0.4
0.2

0.2
0.6

-0.1
-0.7
0.1

0.4
0.4
0.3

-0.2
-0.3

0.5
0.5
0.9

-0.3
-0.2

0.2
0.6

-0.1
-0.5
0.1

-0.1
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.3
0.6

-0.1
-0.7
0.1

0.4
0.4

-0.1
-0.7
0.1

-0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

-0.3
0.5

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

The protests escalated over the weekend <EOS>

Encoder:
Builds up
sentence
meaning

Source
sentence

Translation
generated

Feeding in
last word

Decoder

Conditioning =
Bottleneck

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i
are the inputs to RNN layer i+1

33

The bottleneck problem in RNNsThe final piece: the bottleneck problem in RNNs
En

co
de

r R
NN

Source sentence (input)

<START> he hit me with a pieil a m’ entarté

he hit me with a pie <END>

Decoder RNN

Target sentence (output)

Problems with this architecture?

Encoding of the
source sentence.

34

Linear interaction distanceIssues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:
• Hard to learn long-distance dependencies (because gradient problems!)
• Linear order of words is “baked in”; we already know linear order isn’t the

right way to think about sentences…

35

The waschef who …

Info of chef has gone through
O(sequence length) many layers!

Linear interaction distanceIssues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(sequence length)
unparallelizable operations
• GPUs can perform a bunch of independent computations at once!
• But future RNN hidden states can’t be computed in full before past RNN

hidden states have been computed
• Inhibits training on very large datasets!

36

h1

0

1 n

hTh2

1

2

2

3

Numbers indicate min # of steps before a state can be computed

Attention!

Attention

•Attention provides a solution to the bottleneck
problem.

•Core idea: on each step of the decoder, use
direct connection to the encoder to focus on a
particular part of the source sequence

Mean-pooling for RNNs
The starting point: mean-pooling for RNNs

38

• Starting point: a very basic way of ‘passing information from the encoder’ is to average

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all

hidden states

Attention is weighted averaging
Attention is weighted averaging, which lets you do lookups!

39

Attention is just a weighted average – this is very powerful if the weights are learned!

In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

In attention, the query matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN
At

te
nt

io
n

sc
or

es

dot product

40

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a
particular part of the source sequence

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
sc

or
es

dot product

41

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
sc

or
es

dot product

42

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
sc

or
es

dot product

43

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
sc

or
es

On this decoder timestep, we’re
mostly focusing on the first
encoder hidden state (”he”)

At
te

nt
io

n
di

st
rib

ut
io

n

Take softmax to turn the scores
into a probability distribution

44

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
di

st
rib

ut
io

n
At

te
nt

io
n

sc
or

es

Attention
output

Use the attention distribution to take a
weighted sum of the encoder hidden states.

The attention output mostly contains
information from the hidden states that
received high attention.

45

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
di

st
rib

ut
io

n
At

te
nt

io
n

sc
or

es

Attention
output

Concatenate attention output
with decoder hidden state, then
use to compute ො𝑦1 as before

ො𝑦1

he

46

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
sc

or
es

he

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

ො𝑦2

hit

47

Sometimes we take the
attention output from the
previous step, and also
feed it into the decoder
(along with the usual
decoder input). We do
this in Assignment 4.

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit

ො𝑦3

me

48

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit me

ො𝑦4

with

49

Sequence to sequence with attention
Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit with

ො𝑦5

a

me

50

Sequence to sequence with attentionSequence-to-sequence with attention
En

co
de

r
RN

N

Source sentence (input)

<START>il a m’ entarté

Decoder RNN

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit me with a

ො𝑦6

pie

51

Attention in equations
Attention: in equations

• We have encoder hidden states
• On timestep t, we have decoder hidden state
• We get the attention scores for this step:

• We take softmax to get the attention distribution for this step (this is a probability distribution and
sums to 1)

• We use to take a weighted sum of the encoder hidden states to get the attention output

• Finally we concatenate the attention output with the decoder hidden
state and proceed as in the non-attention seq2seq model

52

Advantages of attention
Attention is great!

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention provides a more “human-like” model of the MT process
• You can look back at the source sentence while translating, rather than needing to remember it all

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with the vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we see what the decoder was focusing on
• We get (soft) alignment for free!
• The network just learned alignment by itself

• (One issue – attention has quadratic cost with respect to sequence length)

54

he hi
t

m
e

w
ith

a pi
e

il

a

m’

entarté

Multiple Inputs?

0.2
-0.3
-0.1
-0.4
0.2

0.8
-0.7
0.1
0.4

-0.4

-0.3
0.3
0.9

-0.8
-0.9

-0.9
-0.7
0.3

-0.1
-0.1

0.6
0.9
0.9

-0.7
0.7

0.0
-0.8
0.7
0.8
0.5

l o u t i d

0.5
-0.9
-0.1
0.2

-0.7

\n

f

0.8
-0.7
0.1
0.4

-0.4

-0.3
0.3
0.9

-0.8
-0.9

-0.9
-0.7
0.3

-0.1
-0.1

0.6
0.9
0.9

-0.7
0.7

0.0
-0.8
0.7
0.8
0.5

l o u n d

0.5
-0.9
-0.1
0.2

-0.7

\n

Dong & Smith 2018

Multiple Inputs?

0.2
-0.3
-0.1
-0.4
0.2

0.8
-0.7
0.1
0.4

-0.4

-0.3
0.3
0.9

-0.8
-0.9

-0.9
-0.7
0.3

-0.1
-0.1

0.6
0.9
0.9

-0.7
0.7

0.0
-0.8
0.7
0.8
0.5

l o u t i d

0.5
-0.9
-0.1
0.2

-0.7

\n

f

0.8
-0.7
0.1
0.4

-0.4

-0.3
0.3
0.9

-0.8
-0.9

-0.9
-0.7
0.3

-0.1
-0.1

0.6
0.9
0.9

-0.7
0.7

0.0
-0.8
0.7
0.8
0.5

l o u n d

0.5
-0.9
-0.1
0.2

-0.7

\n

Concatenate them? Sample high quality ones?

Dong & Smith 2018

Multiple Inputs?

0.2
-0.3
-0.1
-0.4
0.2

0.8
-0.7
0.1
0.4

-0.4

-0.3
0.3
0.9

-0.8
-0.9

-0.9
-0.7
0.3

-0.1
-0.1

0.6
0.9
0.9

-0.7
0.7

0.0
-0.8
0.7
0.8
0.5

l o u t i d

0.5
-0.9
-0.1
0.2

-0.7

\n

0.2
-0.3
-0.1
-0.4
0.2

0.2
-0.3
-0.1
-0.4
0.2

0.2
-0.3
-0.1
-0.4
0.2

0.2
-0.3
-0.1
-0.4
0.2

0.2
-0.3
-0.1
-0.4
0.2

f o u n d

o u n d \nf
0.8

-0.7
0.1
0.4

-0.4

-0.3
0.3
0.9

-0.8
-0.9

-0.9
-0.7
0.3

-0.1
-0.1

0.6
0.9
0.9

-0.7
0.7

0.0
-0.8
0.7
0.8
0.5

l o u n d

Combine attention w/softmax
or average
No (required) training

Dong & Smith 2018

Attention is a general modeling technique
Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the sequence-to-sequence model
for Machine Translation.

• However: You can use attention in many architectures
(not just seq2seq) and many tasks (not just MT)

• More general definition of attention:
• Given a set of vector values, and a vector query, attention is a technique to compute

a weighted sum of the values, dependent on the query.

• We sometimes say that the query attends to the values.
• For example, in the seq2seq + attention model, each decoder hidden state (query)

attends to all the encoder hidden states (values).

57

Attention is a general modeling technique
Attention is a general Deep Learning technique

58

• More general definition of attention:
• Given a set of vector values, and a vector query, attention is a technique to compute

a weighted sum of the values, dependent on the query.

Intuition:
• The weighted sum is a selective summary of the information contained in the values,

where the query determines which values to focus on.
• Attention is a way to obtain a fixed-size representation of an arbitrary set of

representations (the values), dependent on some other representation (the query).

Upshot:
• Attention has become the powerful, flexible, general way pointer and memory

manipulation in all deep learning models. A new idea from after 2010! From NMT!

