Sequence Data,
Recurrent Models &
Attention

CS6120: Natural Language Processing
Northeastern University

David Smith
some slides from Jurafsky & Martin and Hashimoto

Back to Language Modeling

Evaluating LMs

Shannon: Make same predictions (and
mistakes!) as humans (also cogsci)

Turing: Generate text similar to humans
Extrinsic: Help other NLP tasks

Intrinsic: Assign high probability to
correct predictions

Evaluating LMs

. . o M .
Negative log likelihood £(wM) = — Z log p(w; | wi™h)

Cross entropy —

Perplexity

NB: per token, , Iy vl
Perplexity(w,") = 27#%

comparable across
test sets

Evaluating LMs

® A standard benchmark uses 10,000 wordV
on | M tokens of the Penn Treebank (W§]
| 987-89), perplexities of

® |[4]:smoothed 5-gram
® ~60-80: LSTMs and variants
® ~35-55:Transformers and similar (2019-)

® Compare to vocabulary size

Evaluating LMs

® What is perplexity if ...

® a “‘perfect” language models assigns
probability | to w !

® an (unsmoothed) language model assigns
probability 0 to w !

® an overly smoothed language model

assigns all tokens probability — ?

v

Out-of-Vocabulary (OOV)

® Closed vocabulary: Set V on training, use
UNK for everything else

® Model trained on 1995-2003 data will have
a hard time with 2017 data

The report said U.S. intelligence agencies believe Russian military intelligence,
the GRU, used intermediaries such as WikiLeaks, DCLeaks.com and the Guc-

cifer 2.0 "persona” to release emails...

® Character and character-token mixed
models, morpheme or word-piece models
(more about this later)

Markov (n-gram) Models

® Markov assumption: for history length &
N .
o P~ [] pOw; [wimh
i=1

® Pad sequence beginning and end, e.g. bigram

p(I like black coffee) = p(I | O) x p(like | I) x p(black | like) x p(coffee | black) x p(M | coffee)

Markov (n-gram) Models

® Remember the confusing terminology

® Unigram = Oth order

® p(w, W{_l) ~ p(w;)

o p(w, w{‘l, class) = p(w; | class) = naive Bayes
® Bigram = |st order
o p(w; | W{_l) ~ p(w; | wi_1)

® Trigram = 2nd order

e p(w; | W{_l) ~ pw; | wi_s, wi_y) = p(w; | Wii__zl)

What's wrong with n-grams!

® N-grams are too narrow

® Gorillas always like to groom their friends.

® The computer that’s on the 3rd floor of our office building crashed.

® n-grams are too wide

® Jo get gorillas and their in the same context, we
need 6-grams (V° params)

® And the computer example needs more

® Markov models are finite-state and English grammar is
at least context-free (as we recently discussed)

What's wrong with n-grams!

® Rather than growing n or adding a stack
(for context-free grammar), let’s learn what
to encode in a fixed-size memory about the
history.

® \We started from the chain rule

o p(wi) = p(w)p(w, [wp)-p(w; | wi™)--

LM as Classification

® \We started from the chain rule

o p(wi") = pwp(w, | wy)+-p(w; | wi™)--

® Factoring joint probability as an
autoregressive process

® Consider in isolation p(w | u) for some
context u summarizing the history

LM as Classification

® Consider in isolation p(w | u)

e For f, € R*and v, € R" let
exp(p,, - v,)

Zw’e% GXP(,BW/ v,

pw | u) =

® Predict word w/discriminative classifier
p(- | u) = SottMax([f; - v,,[r -V, ...; Py Vv, 1)

Recurrent Neural Networks

I:lf'31 I:lil32 I'_'ICL‘3

%m b %wg

Lm é¢’wm
h,, =RNN(x,,, ~hy,—1)
’wm) _ exp(,@me 'hm)
Zw’ev exp(Bu - hm)

pP(Wmt1 | wi,wa,. ..

RNN(Zpm, hn—1) = g(Ohyy 1 + T Elman (1990) unit

Recurrent Neural Networks

Recurrent Neural Networks

1\\ D .’132 ‘. D CE3
& Y tB :
Encoding
T, :¢wm . lookup layer
By =RNN (2, A1) — @

exp(Buw, 1 - hm
p(wm—l—l | w1, W, . .. ,wm) :Z p(’B +1)

wey €XP(Buy - hm)

RNN(Zpm, hn—1) = g(Ohyy 1 + T Elman (1990) unit

Recurrent Neural Networks

\

1\ D.’BQ\ D.’Bg

ém b t%

pP(Wmt1 | wi,wa,. ..

/@
. lookup layer
Lm :¢wm

eXp(/me_H) hm)

7wm) —
D wey €XP(Bu - hom) \@

RNN(Zpm, hn—1) = g(Ohyy 1 + T Elman (1990) unit

Recurrent Neural Networks

Random vari@
N \ \ \ (observed in text)
NN N BN

/@
A . lookup layer
Lm —=Pw,,

eXp(/me_H) hm)

O :Zw’ev exp(Bu - hom) \@

RNN(Zpm, hn—1) = g(Ohyy 1 + T Elman (1990) unit

Recurrent Neural Networks

Random vari@
N \ \ \ (observed in text)
NN N BN

/@
A . lookup layer
Lm —=Pw,,

exp(Buwp, 1 - om)

7wm) — —
D wey €XP(Buw - hm) \@

RNN(Zpm, hn—1) = 9(Ohyy 1 + T Elman (1990) unit

K-dimensional hidden
representation

\ \ \ \ . Random variables
A CIZ\ \ ZlZ‘\ \ P (observed in text)
\ e o o
N S\ D 1 \ D 2 \ D 3 \

/@
A . lookup layer
Lm —=Pw,,

eXp(/me_H) hm)

P(Wmt1 | w1, wa, = _
. D wey €XP(Buw - hm) \@

RNN(Zpm, hn—1) = 9(Ohyy 1 + T Elman (1990) unit

K-dimensional hidden
representation

\ \ \ \ . Random variables
A CIZ\ \ ZlZ‘\ \ P (observed in text)
\ e o o
N S\ D 1 \ D 2 \ D 3 \

Sigmoid, tanh,
RelLU,...

hm :RNN(CIBm, hm—l) - Recurrent unit
eXp(/me_H) hm)

p(wm+1 | wi, w2, = _
" T D wey €XP(Buw - hm) \@
Same O at

reamen: _4 (1990) unit

recurrent

Recurrent Neural Networks

e . € R" input token embeddings
e . € R output token parameters
e © € R*X recurrence parameters
® /i, € R" initial hidden state

® Like the n of n-grams, dimension K <V
trades off bias and variance

Backprop through Time

Backprop through Time

logp(wm+1 | w1, W2,

., W)

Backprop through Time

logp(wm+1 | w1, W2,

a€m—|—1 _0€m—|—1 ahm
691{:,]«’ N 8hm 69;@,/@/

., W)

Backprop through Time

Backprop through Time

Sentence loss
decomposes by
word

Current
hidden state
depends on ®
multiple times

Cf. logistic
regression gradient

Backprop through Time

Sentence loss
decomposes by
word

gm—I—l — 1ng(wm—|—1 | wi, W2, . .. 7wm)

Current
hidden state
depends on ®
multiple times

Cf. logistic
regression gradient

a€m—|—1 0€m—|—1 ahm
891{:,]«’ N 8hm 89;@,;@/

h :g(wma hm—l)
Ol &
00y i

ahm—l

—g (xm kTt Hk . hm—l)(hm—l,k’ + Hk))
00 1/

Backprop through Time

Sentence loss
decomposes by
word

Current
hidden state
depends on ®
multiple times

Cf. logistic
regression gradient

Depends on
earlier gradients

ahm—l
00 1/

leacher Forcing

We always give the model the correct history to predict the next word (rather
than feeding the model the possible buggy guess from the prior time step).

This is called teacher forcing (in training we force the context to be correct
based on the gold words)

What teacher forcing looks like:
» At word position t

- the model takes as input the correct word wt together with ht-1, computes
a probability distribution over possible next words

» That gives loss for the next token wt+1

« Then we move on to next word, ignore what the model predicted for the
next word and instead use the correct word wt+1 along with the prior
history encoded to estimate the probability of token wt+2.

Activation Functions

values derivatives
3 - y: 1.0 1 o ———————
/ 1
e !
2 _ // 08 n I
e !
, 0.6 - I
1- APEREEE !
0.4 - |
P
’ —— sigmoid I
0 R T p——
tanh 0.2 - /:\
. — — RelU 004 " I T

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Activation Functions

values
31 /
V4
V4
//
2 1 /
V4
V4
V4
1 f/_-——
/
0 === = = —— ’ —— sigmoid
tanh
- = RelU
_1 -
-3 -2 -1 0 1 2 3

derivatives

1.0 - Jem—————————

|
- I

0.8 |
I

0.6 - l Vanishing gradients
I
|

04] I
|

0.2 - /:\

00 = F———————

-3 -2 -1 0 2 3

Gated RNNs

Specifically, a long
short-term memory
(LSTM) network

fri1 =0(© DR, 4+ 07N, 1 + b)) forget gate

Tl :a(@(h_”;)hm + 0 g 4 b;) input gate

Cntl = tanh(@(h_m) h,, + @(wéc)wmﬂ) update candidate
Cril =Fmi1 ® Cm + tma1 © Cmat memory cell update
Omi1 =0(@") p L @)+ b,) output gate

hit1 =0m+1 © tanh(cpa1) output.

Not squashed

Gated RNNs

Specifically, a long
short-term memory

(LSTM) network

fina1 :a(@(h_’f)hm + @(x%f):cmﬂ +by) forget gate
Tl :a(@(h_”;)hm + 0 g 4 b;) input gate
Cntl = tanh(@(h_m) h,, + @(wéc)wmﬂ) update candidate

Cm+1 :fm—l—l ® Cm + 'im—l—l ® ém—l—l

memory cell update

Omi1 =0(@") p L @)+ b,) output gate

hm_|_1 —Om+1 © tanh(cm+1)

output.

Not squashed

Gated RNNs

fri1 =0(© DR, 4+ 0N, 1 + b))
a1 :O(G(h_ﬂ)hm - @(x_m.)a:m+1 + b;)
Crmil = tanh(@(h_m) h,, + @(w_m)azmﬂ)
Cmt1 =Fm+1 © Cm + tnt1 © Cmt1

Omi1 =c(@" 79 4+ @F=g 1+ b,)

hm_|_1 —Om+1 © tanh(cm+1)

Lots more
parameters ©®

Specifically, a long

short-term memory
(LSTM) network

forget gate

input gate

update candidate
memory cell update

output gate
output.

RNNs for Classification

RNNs for sequence labeling

Assign a label to each element of a sequence

Part-of-speech tagging
agmax NNP MD VB DT NN

S"“’E;’;we'([,,‘rL,- J[i J[..{LHH }[il R ol
wl L |

RNN h
Layer(s)

1]
Embeddings e é é
I |

Words Janet will back the bill

D\

JJ:
v,
D
Jﬁ
i |

RNNs for sequence classification

Text classification

[Softmax |
(FFN>

(& =]
(e =L]

@ DS U

Instead of taking the last state, could use some pooling function of

all the output states, like mean pooling 1
N mean = B h;
=1

= —th -
C
O 1
- 2, 4. .
(G a [
. -
e .\,. |
C ‘o .
e MAlA,mL -
o0)
o S~
QN QOul].lwl -
V)
% °

O

prd

o 1§

o B
v & 7D
. -
@
=
=

R @)
900 C
v,

(®))
-@80)— C
bfx
@803
f/

I A
@80
V
=
= o
S =
g 3
E €

Stacked RNNs

I

Bidirectional RNNs

" 2 & A
Ml - | ncaten M
h; = RNNfomad(X1 - ,X() ,-.J% »b _,j‘] “ :uatt:utasted »B
h? = RNNpackward (Xt; .- - Xn) ([e - <« RNN 2
' |
hy = H;;hi] Ny —— RNN 1 . k
= h; @ he) . .

Bidirectional RNNs for classification

)
Q
1
g

X
y

(
‘._
h1 n

hf~—— [—— ——RNN2

—

- . RNN 1 *h,
1 X2 Wxa n
N~ R [.

Encoder-Decoder RNINs
for Translation

Four architectures for NLP tasks with RNNs

) T wm)

t t 4 t t ¢
X4 Xo Xn X4 Xo X
a) sequence labeling b) sequence classification
y1 y2 R ym
t ¢ f
Xo Xqg X (Decoder RNN

C ? ? RNN ?> ¢

" ¥ ¥ ; Iincoder RNN f)

X4 X2 -1 X4 X X

n

c) language modeling d) encoder-decoder

Encoder-decoder

Y1 Yo . Ym

(Context)

X4 Xo . Xn

Translation by as encoder-decoder

Target sentence (output)
Encoding of the source sentence. A

Provides initial hidden state
for Decoder RNN.

\

A\
he hit me with a pie <END>

\ £ £ £ £ £ £ £

pd of % T g0 5D g0 50 o
= © © © © © © © D
o o) o) o) o) 0 O 0 0 o) 0 o) S
5 e |0 (o] |@ Jol - el ol 30| |0 ol :)0 <3
= o 'le[o[["|® o[lo[10 of lo[T|o[-]o @
O e (o (o (@ o] :|lo] :|O 0| :|o o| 3|0 -
O

— =

il m’ a entarté <START> he hit me with a pie
\ J
Y
Source sentence (input) Decoder RNN is a Language Model that generates

target sentence, conditioned on encoding.

Encoder RNN produces
an encoding of the
source sentence.

Sequence to sequence is everywhere!

 The general notion here is an encoder-decoder model
* One neural network takes input and produces a neural representation
* Another network produces output based on that neural representation
* |f the input and output are sequences, we call it a seq2seq model

* Sequence-to-sequence is useful for more than just MT
 Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text - short text)
* Dialogue (previous utterances - next utterance)
» Parsing (input text - output parse as sequence)
» Code generation (natural language - Python code)

Neural Machine Translation (NMT)

 The sequence-to-sequence model is an example of a Conditional Language Model

* Language Model because the decoder is predicting the next word of the target sentence y
* Conditional because its predictions are also conditioned on the source sentence x

e NMT directly calculates P(y|z) :

P(y|lx) = P(y1|z) P(y2|y1, x) P(y3ly1, 2,) ... P(yrly1, - - - s Y7—1,)

\ J
Y

Probability of next target word, given
target words so far and source sentence x

* Question: How to train an NMT system?
* (Easy) Answer: Get a big parallel corpus...
* Butthere is now exciting work on “unsupervised NMT”, data augmentation, etc.

Training an NMT System

= negative log = negative log = negative log
prob of “he” prob of “with” prob of <END>

T
1
=;;1t y

11

H Ja |+ Js + Jo H Iy

||

Al 5; 5]\3 A4 5;5 y y
=
o 0 0 0 0 O 0 0 0 0 O @)
L -
0 o >lo[e[0 1o—>le[—{o oo >lo[o
§e.
8 @ @ @ () o) (@) o) o) (@) o) @
L
il m’ a entarté <START> he hit me with a pie
N\ J \ J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

NNY 4129p039(

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Multi-layer deep encoder-decoder MT net

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i
are the inputs to RNN layer i+1

/! Translation
protests escalated over the | weeken
generated
r A
Encoder:
Builds u
P Decoder
sentence
meaning
-0. -0.1 -0.1 -
Source Die Proteste waren am Wochenende eskaliert <EOS> pk(i(ests Jﬁf Feedmg In
sentence last word

Conditioning =
Bottleneck

The bottleneck problem in RNNs

Encoding of the
source sentence.
Target sentence (output)

A

(\

with a pie <END>
é (] [() o o @) (@) (@) o (@) (@)
o el (0] Jof | |0 SO _S{ol o] o jjof .o J[fO
G e °|©® o |'|O® 0] “loe|l ‘1ol 10| “|o] |0 (0
S o [[o (@) (@) (@ (@ o (@ (0

C T T T I
) | CT T T T
il a m’ entarté <START> he hit me with a pie
N\ J
Y

Source sentence (input)

Problems with this architecture?

NNY 412P02a(d

Linear interaction distance

* O(sequence length) steps for distant word pairs to interact means:
» Hard to learn long-distance dependencies (because gradient problems!)

 Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

—P..Q —_— — .O.—>I—>

T
—>00® ——> —> 000 —»i

The chef who ...

Info of chef has gone through
O(sequence length) many layers!

Linear interaction distance

* Forward and backward passes have O(sequence length)
unparallelizable operations

* GPUs can perform a bunch of independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

* Inhibits training on very large datasets!

Numbers indicate min # of steps before a state can be computed

Attention!

Attention

¢ Attention provides a solution to the bottleneck
problem.

e Core idea: on each step of the decoder, use
direct connection to the encoder to focus on a
particular part of the source sequence

Mean-pooling for RNNs

positive How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all
hidden states

Sentence
encoding

Vv

—> 0000

A4
Vv

—> 0000

]

—> 0000

|

o — 0000

overall enjoyed the movie

e Starting point: a very basic way of ‘passing information from the encoder’ is to average

Attention is weighted averaging

Attention is just a weighted average — this is very powerful if the weights are learned!

In attention, the

matches all keys softly,

to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

keys values Weighted

ki
k2

query
q k3
k4

k5

Sum
vl
v2
output
s T —>
v4
v5

In a lookup table, we have a table of keys
that map to values. The matches
one of the keys, returning its value.

keys values

d

b

s

query
d

vl
V2
V3

output
v4 % v4
v5

Sequence to sequence with attention

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a
particular part of the source sequence
dot product

(e
O wn
2 8
(e
@)
2 9
<
)
()
3 o (o (o (o o s
2= o .jo| Jo .[o 5| O S
O & o “|o| e “|o ’lo @
S o) o) o) 0 O =
il a m’ entarté <START>
4 v)

Source sentence (input)

Sequence to sequence with attention

dot product

C
O w
2 8
3 8{
2 o
<
w)

O o) o) o) 0 0
= o| (o |o| .|o | © 1
S = o “|e[je["|® ’lo
S o |o] |o |o O =

il a m’ <START>

N

Y
Source sentence (input)

Sequence to sequence with attention

dot product

%r_J
NNY J2p02a(

Sequence to sequence with attention

dot product

C
O
)
C
Q
=
<
w
] o) o} S
)
i o 0 8
cz) |® 0
5) @)
Z
T T -
il m <START>
N
Y
Source sentence (input)

Sequence to sequence with attention

On this decoder timestep, we're

- mostly focusing on the first
S .o / encoder hidden state (“he”)
o 5 {
- D
C o
U T
25
© Take softmax to turn the scores
_ . o e . . .

- into a probability distribution
S8
g S /
2 o
<
_ A 3
% P) 8_
S £ O ®
L @ g

T =

il a m’ entarté <START>
N J
Y

Source sentence (input)

Sequence to sequence with attention

Attention Use the attention distribution to take a
output weighted sum of the encoder hidden states.

The attention output mostly contains
information from the hidden states that
received high attention.

Attention
distribution
K_H

Attention
scores

w,
o) 0 0 &
()]
SZ) |el o e 8
S = o “|e| e ®
T @ @ ®)
=
T T T i
il a m’ entarté <START>
4 v)

Source sentence (input)

Sequence to sequence with attention

Attention he
output T

Concatenate attention output
with decoder hidden state, then
use to compute ¥, as before

Attention
distribution

Attention
scores

&
© o ol (e o) o S
= o |0 (o .o | © o
S o ® e '|® 10 @
S o)))) o =

P

il a m’ entarté <START>
\ v J

Source sentence (input)

Sequence to sequence with attention

Attention hit

output A
c “
S S { Y2
S 3 H A
c o
U T .
E N2l N H =
©
C
O wn
2 8 (
QCJ 8 A
2 o
<
w)
(- M
= [[sLfelfel (el 52 8
S N H o
= o le el e >0 o Sometimes we take the ©
S o o o o (@) o attention output from the =)
previous step, and also %
/ feed it into the decoder
il a m’ entarté <START> he (along W'_th the usual
\ y decoder input). We do
Y this in Assignment 4.

Source sentence (input)

Sequence to sequence with attention

me

Attention

Decoder RNN
—M

N

A
Y3

output
[

<

0000 [«

0000 [«——

0000 |c——

~
7

0000 [<—

~
7

0000 <—

0000 <—

N

{

uoIINgLIISIp
uoluaNY

NI'S

{

SaJ0JS
UOIURNY

0000 |<—

{

NNY
Japoou3]

hit

<START> he

entarté

ml

il

Y

Source sentence (input)

Sequence to sequence with attention

Decoder RNN
—M

N

with
A

Attention

‘
Ml
T~

<

0000 [¢e——

0000 [¢e——

0000 [¢e——

0000 |c—

0000 [<—
A

0000 [<—
7

Q000 |<—
\

fll<l|\

uoiNgLIasIp
uolUINY

IS

fll<1|\

SaJ02JS
UOIURNY

0000 [<—

rlll<lll\

NNY
Japoou]

me

hit

<START> he

entarté

ml

il

Y

Source sentence (input)

Sequence to sequence with attention

Decoder RNN
—M

S <— <

Attention

‘
Ml
<

.

N
7

N
7

N
7

N
T

{

uoIINgLIIsIp
UOI1IURNIY

¢
A

{

SaJ02JS
uoluaNY

{

NNY
Japoou]

0000 j[e—

0000 [«——

0000 [¢——

0000 [c——

0000 |c-——

0000 <—

000 <—

0000 [<—

0000 |<—

me with

hit

<START> he

entarté

ml

il

Y

Source sentence (input)

Sequence to sequence with attention

pie

Attention

Decoder RNN
—M

N

output

Ye
A

N
—_—

0000 [¢e—

0000 je——

0000 [c—

0000 [c—

0000 [c—

N
7

¢

0000 je——

0000 |<—

000 <—

<
T~

N
7|

{

uolnqLiIsIp
UoIIU31Y

¢
A

{

S2J02S
uoUINY

000 <—

0000 <—

{
NNY
Japoou]

a

me with

hit

<START> he

entarté

ml

il

Y

Source sentence (input)

Attention in equations

We have encoder hidden states hi,...,hy € R"
On timestep t, we have decoder hidden state s; € R”"
We get the attention scores e’ for this step:

el =[s'hy,...,slhy] € RY

We take softmax to get the attention distribution o' for this step (this is a probability distribution and
sumsto 1)

o = softmax(e’) € RY

We use o to take a weighted sum of the encoder hidden states to get the attention output a;
N
a; = Z ath; € R"
i=1

Finally we concatenate the attention output a; with the decoder hidden
state St and proceed as in the non-attention seq2seq model

[Clt; St] € R2h

Advantages of attention

e Attention significantly improves NMT performance
* It’s very useful to allow decoder to focus on certain parts of the source

e Attention provides a more “human-like” model of the MT process

* You can look back at the source sentence while translating, rather than needing to remember it all
e Attention solves the bottleneck problem

* Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with the vanishing gradient problem
* Provides shortcut to faraway states

e Attention provides some interpretability

* By inspecting attention distribution, we see what the decoder was focusing on

o . o £ o
c < £ = © o
il
* We get (soft) alignment for free! H
a
* The network just learned alignment by itself
o — attention has quadratic cost with respect to sequence length)

m!
entarté

Multiple Inputs?

Dong & Smith 2018

Multiple Inputs?

Dong & Smith 2018

Concatenate them” Sample high quality ones?

Multiple Inputs?

Dong & Smith 2018

u_
A

—f

n_
A

0

d—
A

\N
?

T

—Uu

N

No (required) training

—d

Combine attention w/softmax
I d Or average

Attention is a general modeling technique

We've seen that attention is a great way to improve the sequence-to-sequence model
for Machine Translation.

However: You can use attention in many architectures
(not just seg2seq) and many tasks (not just MT)

More general definition of attention:

* Given a set of vector values, and a vector guery, attention is a technique to compute
a weighted sum of the values, dependent on the query.

We sometimes say that the query attends to the values.

For example, in the seq2seq + attention model, each decoder hidden state (query)
attends to all the encoder hidden states (values).

Attention is a general modeling technique

 More general definition of attention:

* Given a set of vector values, and a vector query, attention is a technique to compute
a weighted sum of the values, dependent on the query.

Intuition:

* The weighted sum is a selective summary of the information contained in the values,
where the query determines which values to focus on.

e Attention is a way to obtain a fixed-size representation of an arbitrary set of
representations (the values), dependent on some other representation (the query).

Upshot:

* Attention has become the powerful, flexible, general way pointer and memory
manipulation in all deep learning models. A new idea from after 2010! From NMT!

