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A Language

• Some sentences in the language

✤ The man took the book.

✤ Colorless green ideas sleep furiously.

✤ This sentence is false.

• Some sentences not in the language

✤ *The girl, the sidewalk, the chalk, drew.

✤ *Backwards is sentence this.

✤ *Je parle anglais.



Languages as Rewriting Systems

• Start with some “non-terminal” symbol S

• Expand that symbol, using a rewrite rule.

• Keep applying rules until all non-terminals 
are expanded to terminals.

• The string of terminals is a sentence of the 
language.



Chomsky Hierarchy
• Let Caps = nonterminals; lower = terminals; Greek = strings 

of terms/nonterms

• Recursively enumerable (Turing equivalent)

✤ Rules: α →β

• Context-sensitive

✤ Rules: αAβ→αγβ

• Context-free

✤ Rules:  A→α

• Regular (finite-state)

✤ Rules: A→aB ;  A→a



Regular Language Example

• Nonterminals: S, X

• Terminals: m, o

• Rules:

• S→mX

• X→oX

• X→o

• Start symbol: S

One expansion

S
mX
moX
mooX
mooo



Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Example: Sheep Language

• In the language:
“ba!”, “baa!”, “baaaaa!”

• Not in the language:

• “ba”, “b!”, “ab!”, “bbaaa!”, “alibaba!”

s1 s2 s3 s4

b a !

a

double circle

indicates “accept state”

Finite-state Automata

Strings in and out of the example Regular Language:

Regular Expression

baa*

Another Regular Language

• Strings in and not in this language

✤ In the language:

• “ba!”, “baa!”, “baaaaaaaa!”

✤ Not in the language:

• “ba”, “b!”, “ab!”, “bbaaa!”, “alibaba!”

• Regular expression: baa*!

• Finite state automaton: a Boolean LM



Regular Languages

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Regular Languages: related concepts

Regular Languages
the accepted strings

Regular Expressions
a way to type the automata

Finite-state Automata
machinery for accepting
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Function from strings to ... 

a:x/.5
c:z/.7

ε:y/.5
.3

Acceptors (FSAs) Transducers (FSTs)

a:x
c:z

ε:y

a
c

ε

Unweighted

Weighted a/.5
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.3

{false, true} strings

numbers (string, num) pairs
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Sample functions 

Acceptors (FSAs) Transducers (FSTs)

Unweighted

Weighted

{false, true} strings

numbers (string, num) pairs

Grammatical?

How grammatical? 
Better, how likely?

Markup 
Correction 
Translation

Good markups 
Good corrections 
Good translations



Bigram LM as WFSM
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Bigram LM as WFSM

the

quick

brown

fox

jumped

V states

O(V2) arcs
(& parameters)

What about a 
trigram model?

What about backoff?



Noisy Channels
(Again)



 What does this say?  
 And what other words are substrings? 

 Given L = a “lexicon” FSA that matches all English words. 
 How to apply to this problem? 
 What if Lexicon is weighted? 
 From unigrams to bigrams? 
 Smooth L to include unseen words?

Word Segmentation

theprophetsaidtothecity



 Spelling correction also needs a lexicon L 
 But there is distortion … 

 Let T be a transducer that models common typos and 
other spelling errors 
 ance () ence	 (deliverance, ...) 
 e  ε (deliverance, ...) 
 ε  e // Cons _ Cons	 (athlete, ...)  
 rr  r 	 (embarrass, occurrence, …) 
 ge  dge	 (privilege, …) 
 etc. 

 Now what can you do with L .o. T ? 
 Should T and L have probabilities? 
 Want T to include “all possible” errors …

Spelling correction
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misspelling



Noisy Channel Model

noisy channel   X  Y

real language   X

yucky language   Y

want to recover X from Y 

(lexicon space)*

delete spaces

text w/o spaces
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Noisy Channel Model
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real language   X
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want to recover X from Y 

(lexicon space)*

pronunciation

speech

language model 

acoustic model 
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Noisy Channel Model

noisy channel   X  Y

real language   X

yucky language   Y

want to recover X from Y 

“target” language

translation

“source” language

language model 

translation model 
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Noisy Channel Model

noisy channel   X  Y

real language   X

yucky language   Y

want to recover X from Y 

tree

delete everything 
but terminals

text

probabilistic CFG 
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Noisy Channel Model

noisy channel   X  Y

real language   X

yucky language   Y

p(X)

p(Y | X)

p(X,Y)

*

=

want to recover x∈X from y∈Y
choose x that maximizes p(x | y) or equivalently p(x,y)
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Noisy Channel Model
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Suppose y=“C”; what is best “x”?

Function/
relation 

composition
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Noisy Channel Model

p(X)

p(Y | X)

p(X, y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:C
/0.

07 b:C/0.24

.o. *
C:C/1 (Y=y)?restrict just to 

paths compatible 
with output “C”

best path



 Let Lexicon be a machine that matches all Turkish 
words 
 Same problem as word segmentation (in, e.g., Chinese) 
 Just at a lower level: morpheme segmentation 
 Turkish word: uygarlaştıramadıklarımızdanmışsınızcasına 

= uygar+laş+tır+ma+dık+ları+mız+dan+mış+sınız+ca+sı+na 
(behaving) as if you are among those whom we could not cause to 
become civilized 

 Some constraints on morpheme sequence: bigram probs 
 Generative model – concatenate then fix up joints 

 stop + -ing = stopping,     fly + -s = flies,     vowel harmony 
Use a cascade of transducers to handle all the fixups 

 But this is just morphology! 
 Can use probabilities here too (but people often don’t)

Morpheme Segmentation



    Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

O(k) deletion arcs 

O(k) insertion 
arcs 

O(k2) substitution  
arcs 

O(k) no-change arcs 



    Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

O(k) deletion arcs 

O(k) insertion 
arcs 

O(k2) substitution  
arcs 

O(k) identity arcs 

Likely edits = high-probability arcs

Stochastic



Edit transducer for Levenshtein distance
All edits have additive cost = 1

Edit transducer for probabilistic Levenshtein distance
with copy probability = 0.8



clara

    Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

Stochastic

.o.

=

caca
.o.

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c

ε:c
c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c
ε:c

c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε
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    Edit Distance Transducer

a:ε

ε:a

b:ε

ε:b

a:b

b:a

a:a

b:b

Stochastic

.o.

=

caca
.o.

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c

ε:c
c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε

ε:c

c:c
ε:c

l:c
ε:c

a:c

ε:c

r:c
ε:c

a:c
ε:c

c:ε l:ε a:ε r:ε a:ε

ε:a

c:a
ε:a

l:a
ε:a

a:a

ε:a

r:a
ε:a

a:a
ε:a

c:ε l:ε a:ε r:ε a:ε

Best path (by Dijkstra’s algorithm)



Transliteration 
(Knight & Graehl, 1998)

Computational Linguistics Volume 24, Number 4 

T (a) ~ (ka) ~-(sa) ~ (ta) ~(na) ¢" (ha) ~(ma) ~ (ra) 
(i) ~ (k±) ~ (shi) Y-(ch±) ~ (ni) a (hi) ~ (mi) ~ (ri) 
(u) ~ (ku) X (su) 7 (tsu) % (nu) 7 (hu) ~ (mu) 2~ (ru) 

:n(e) ~(ke) ~ (se) ~ (te) ~ (he) ~-(he) fl (me) , ~ (re) 
M- (o) = (ko) Y (so) b (to) ] (no) • (ho) ~ (mo) ~ (ro) 
-~ (ba) 2"(ga) -< (pa) -Y(za) ~(da) T (a) -V (ya) ~ (ya) 

(bi) @'(gi) ff (pi) ~ (ji) Y(de) 4 (i) ~ (yo) ~ (yo) 
Y (bu) ~ ( g u )  ~ (pu) X'(zu) F (do) ~ (u) :~(yu)  ~ (yu) 
-<(be) ~(ge) ~ (pe) ~'(ze) ~ (n) ~ (e) ~ (v) 

(bo) ~(go) ~:(po) / (zo) ~'(chi) ~ (o) V (wa) -- 

Figure 1 
Katakana symbols and their Japanese pronunciations. 

Angela Johnson 

(a n jira jyo n son)  

New York Times 

(nyu uyo oku ta imuzu) 

ice cream 

(a isukurfimu) 

Omaha Beach 

(omahabiit chi) 

pro soccer 

(purosakkaa) 

Tonya Harding 

(toonya haadingu) 

ramp lamp casual fashion team leader 
~yT"  ? y ~  ~ J = T J ~ 7 ~ y  ~ - - ~ - - ~ ' - -  
(ranpu) (ranpu) (kaj yuaruhas shyon) (chifmuriidaa) 

Notice how the transliteration is more phonetic than orthographic; the letter h in 
Johnson does not produce any katakana. Also, a dot-separator (,) is used to sepa- 
rate words, but not consistently. And transliteration is clearly an information-losing 
operation: ranpu could come from either lamp or ramp, while aisukuri imu loses the 
distinction between ice cream and I scream. 

Transliteration is not trivial to automate, but we will be concerned with an even 
more challenging problem--going from katakana back to English, i.e., back-translit- 
eration. Human translators can often "sound out" a katakana phrase to guess an 
appropriate translation. Automating this process has great practical importance in 
Japanese/English machine translation. Katakana phrases are the largest source of text 
phrases that do not appear in bilingual dictionaries or training corpora (a.k.a. "not- 
found words"), but very little computational work has been done in this area. Yamron 
et al. (1994) briefly mention a pattern-matching approach, while Arbabi et al. (1994) 
discuss a hybrid neural-net/expert-system approach to (forward) transliteration. 

The information-losing aspect of transliteration makes it hard to invert. Here are 
some problem instances, taken from actual newspaper articles: 

? ? ? 

(aasudee) (robaato shyoon renaado) (masutaazutoonamento) 

600 

Computational Linguistics Volume 24, Number 4 

symbols, however, suffers from a number of problems. One can easily wind up with 
a system that proposes iskrym as a back-transliteration of aisukuriimu. Taking letter 
frequencies into account improves this to a more plausible-looking isclim. Moving to 
real words may give is crime: the i corresponds to ai, the s corresponds to su, etc. 
Unfortunately, the correct answer here is ice cream. 

After initial experiments along these lines, we stepped back and built a generative 
model of the transliteration process, which goes like this: 

. 

2. 

3. 

4. 

5. 

An English phrase is written. 

A translator pronounces it in English. 

The pronunciation is modified to fit the Japanese sound inventory. 

The sounds are converted into katakana. 

Katakana is written. 

This divides our problem into five subproblems. Fortunately, there are techniques 
for coordinating solutions to such subproblems, and for using generative models in the 
reverse direction. These techniques rely on probabilities and Bayes' theorem. Suppose 
we build an English phrase generator that produces word sequences according to 
some probability distribution P(w). And suppose we build an English pronouncer that 
takes a word sequence and assigns it a set of pronunciations, again probabilistically, 
according to some P(plw). Given a pronunciation p, we may want to search for the 
word sequence w that maximizes P(wlp ). Bayes' theorem lets us equivalently maximize 
P(w) • P(plw),  exactly the two distributions we have modeled. 

Extending this notion, we settled down to build five probability distributions: 

. 

2. 

3. 

4. 

5. 

P(w) - -  generates written English word sequences. 

P(elw) - -  pronounces English word sequences. 

P(jle) - -  converts English sounds into Japanese sounds. 

P(klj ) - -  converts Japanese sounds to katakana writing. 

P(o]k) - -  introduces misspellings caused by optical character recognition 
(OCR). 

Given a katakana string o observed by OCR, we want to find the English word 
sequence w that maximizes the sum, over all e, j, and k, of 

P(w). P(elw). P(jle). P(klj) • P(olk) 

Following Pereira and Riley (1997), we implement P(w) in a weighted finite-state ac- 
ceptor (WFSA) and we implement the other distributions in weighted finite-state trans- 
ducers (WFSTs). A WFSA is a state/transition diagram with weights and symbols on 
the transitions, making some output sequences more likely than others. A WFST is a 
WFSA with a pair of symbols on each transition, one input and one output. Inputs 
and outputs may include the empty symbol ¢. Also following Pereira and Riley (1997), 
we have implemented a general composition algorithm for constructing an integrated 
model P(xlz) from models P(xly ) and P(y[z), treating WFSAs as WFSTs with identical 
inputs and outputs. We use this to combine an observed katakana string with each 
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Sequence Labeling 
Applications



Parts of Speech
From the earliest linguistic traditions (Yaska and Panini 5th 
C. BCE, Aristotle 4th C. BCE), the idea that words can be 
classified into grammatical categories 
• part of speech, word classes, POS, POS tags 
8 parts of speech attributed to Dionysius Thrax of 
Alexandria (c. 1st C. BCE):  
• noun, verb, pronoun, preposition, adverb, 

conjunction, participle, article  
• These categories are relevant for NLP today.



Two classes of words: Open vs. Closed

Closed class words 
• Relatively fixed membership 
• Usually function words: short, frequent words with 

grammatical function 
• determiners: a, an, the 

• pronouns: she, he, I 

• prepositions: on, under, over, near, by, … 
• Very slow admission of new closed-class words, e.g. regarding 

Open class words 
• Usually content words: Nouns, Verbs, Adjectives, Adverbs 
• Plus interjections: oh, ouch, uh-huh, yes, hello 

• New nouns and verbs like iPhone or to fax



Open class ("content") words

Closed class ("function")

Nouns Verbs

Proper Common

Auxiliary

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

Janet 
Italy

cat,  cats 
mango

eat 
went

can 
had

old   green   tasty

slowly yesterday

to with

off   up

the some

and or

they its

Numbers

122,312 
one

Interjections Ow  hello



Part-of-Speech Tagging
Assigning a part-of-speech to each word 
in a text.  
Words often have more than one POS.  
book: 
• VERB: (Book that flight)  
• NOUN: (Hand me that book).



Part-of-Speech Tagging
Map from sequence x1,…,xn of words to y1,…,yn of POS 
tags 



"Universal Dependencies" TagsetNivre et al. 2016



Sample "Tagged" English sentences

There/PRO were/VERB 70/NUM 
children/NOUN there/ADV ./PUNC 
Preliminary/ADJ findings/NOUN were/
AUX reported/VERB in/ADP today/NOUN 
’s/PART New/PROPN England/PROPN 
Journal/PROPN of/ADP Medicine/PROPN



Why Part of Speech Tagging?



Why Part of Speech Tagging?

◦ Can be useful for other NLP tasks
◦ Parsing: POS tagging can improve syntactic parsing
◦ MT: reordering of adjectives and nouns (say from Spanish to English)
◦ Sentiment or affective tasks: may want to distinguish adjectives or 

other POS
◦ Text-to-speech (how do we pronounce “lead” or "object"?)



Why Part of Speech Tagging?

◦ Can be useful for other NLP tasks
◦ Parsing: POS tagging can improve syntactic parsing
◦ MT: reordering of adjectives and nouns (say from Spanish to English)
◦ Sentiment or affective tasks: may want to distinguish adjectives or 

other POS
◦ Text-to-speech (how do we pronounce “lead” or "object"?)

◦ Or linguistic or language-analytic computational tasks
◦ Need to control for POS when studying linguistic change like creation 

of new words, or meaning shift
◦ Or control for POS in measuring meaning similarity or difference



How difficult is POS tagging in English?
Roughly 15% of word types are ambiguous 
• Hence 85% of word types are unambiguous 
• Janet is always PROPN, hesitantly is always ADV  

But those 15% tend to be very common.  
So ~60% of word tokens are ambiguous 
E.g., back 

earnings growth took a back/ADJ seat 
a small building in the back/NOUN 
a clear majority of senators back/VERB the bill  
enable the country to buy back/PART debt 
I was twenty-one back/ADV then 



POS tagging performance in English
How many tags are correct?  (Tag accuracy)
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POS tagging performance in English
How many tags are correct?  (Tag accuracy)

◦ About 97%
◦ Hasn't changed in the last 10+ years
◦ HMMs, CRFs, BERT perform similarly .
◦ Human accuracy about the same

But baseline is 92%!
◦ Baseline is performance of stupidest possible method

◦ "Most frequent class baseline" is an important baseline for many tasks
◦ Tag every word with its most frequent tag
◦ (and tag unknown words as nouns)

◦ Partly easy because
◦ Many words are unambiguous



Sources of information for POS tagging
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Sources of information for POS tagging

Janet will back the bill
     AUX/NOUN/VERB?           NOUN/VERB? 

Prior probabilities of word/tag 
• "will" is usually an AUX

Identity of neighboring words 
• "the" means the next word is probably not a verb



Standard algorithms for POS tagging
Supervised Machine Learning Algorithms: 
• Hidden Markov Models 
• Conditional Random Fields (CRF)/ Maximum Entropy Markov 

Models (MEMM) 
• Neural sequence models (RNNs or Transformers) 
• Large Language Models (like BERT), finetuned 
All required a hand-labeled training set, all about equal performance 
(97% on English) 
All make use of information sources we discussed 
• Via human created features: HMMs and CRFs 
• Via representation learning:  Neural LMs



Noisy Channel for Tagging

p(X)

p(Y | X)

p(X, y)

*

=

a:D
/0.

9a:C
/0.

1 b:C/0.8b:D/0.2

a:a
/0.

7 b:b/0.3

.o.

=

a:C
/0.

07 b:C/0.24

.o. *
C:C/1 p(Y = y)?

best path

acceptor: p(tag sequence)

transducer: tags  words

acceptor: the observed words

transducer: scores candidate tag seqs 
on their joint probability with obs words, 

i.e. a Hidden Markov model

“Markov Model”

“Unigram Replacement”

“straight line”



Named Entities
◦ Named entity, in its core usage, means anything that 

can be referred to with a proper name. Most common 
4 tags: 
◦ PER (Person): “Marie Curie” 
◦ LOC (Location): “New York City”  
◦ ORG (Organization): “Stanford University” 
◦ GPE (Geo-Political Entity): "Boulder, Colorado" 

◦ Often multi-word phrases 
◦ But the term is also extended to things that aren't entities: 

◦ dates, times, prices



Named Entity tagging
The task of named entity recognition 
(NER): 
• find spans of text that constitute 

proper names 
• tag the type of the entity. 



NER output



Why NER?
Sentiment analysis: consumer’s sentiment 
toward a particular company or person? 
Question Answering: answer questions about 
an entity? 
Information Extraction: Extracting facts about 
entities from text. 
 



Why NER is hard
1) Segmentation 

• In POS tagging, no segmentation 
problem since each word gets one tag. 

• In NER we have to find and segment the 
entities! 

2) Type ambiguity



BIO Tagging
How can we turn this structured problem into a 
sequence problem like POS tagging, with one 
label per word? 

[PER Jane Villanueva] of [ORG United] , a unit 
of [ORG United Airlines Holding] , said the fare 
applies to the [LOC Chicago ] route. 



BIO Tagging
[PER Jane Villanueva] of [ORG United] , a unit of [ORG United 
Airlines Holding] , said the fare applies to the [LOC Chicago ] 
route. 

Now we have one tag per token!!!



BIO Tagging
B: token that begins a span 
I: tokens inside a span 
O: tokens outside of any span 

# of tags (where n is #entity types): 
	1 O tag,  
n B tags,  
n I tags 
 total of 2n+1



BIO Tagging variants: IO and BIOES
[PER Jane Villanueva] of [ORG United] , a unit of [ORG United 
Airlines Holding] , said the fare applies to the [LOC Chicago ] 
route. 



Standard algorithms for NER
Supervised Machine Learning given a human-
labeled training set of text annotated with tags 
• Hidden Markov Models 
• Conditional Random Fields (CRF)/ Maximum 

Entropy Markov Models (MEMM) 
• Neural sequence models (RNNs or Transformers) 
• Large Language Models (like BERT), finetuned
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word PTB tag UD tag UD attributes

The DT DET DEFINITE=DEF PRONTYPE=ART

German JJ ADJ DEGREE=POS

Expressionist NN NOUN NUMBER=SING

movement NN NOUN NUMBER=SING

was VBD AUX MOOD=IND NUMBER=SING PERSON=3
TENSE=PAST VERBFORM=FIN

destroyed VBN VERB TENSE=PAST VERBFORM=PART
VOICE=PASS

as IN ADP

a DT DET DEFINITE=IND PRONTYPE=ART

result NN NOUN NUMBER=SING

. . PUNCT

Figure 8.1: UD and PTB part-of-speech tags, and UD morphosyntactic attributes. Example
selected from the UD 1.4 English corpus.

8.2 Morphosyntactic Attributes4096

There is considerably more to say about a word than whether it is a noun or a verb: in En-4097

glish, verbs are distinguish by features such tense and aspect, nouns by number, adjectives4098

by degree, and so on. These features are language-specific: other languages distinguish4099

other features, such as case (the role of the noun with respect to the action of the sen-4100

tence, which is marked in languages such as Latin and German5) and evidentiality (the4101

source of information for the speaker’s statement, which is marked in languages such as4102

Turkish). In the UD corpora, these attributes are annotated as feature-value pairs for each4103

token.64104

An example is shown in Figure 8.1. The determiner the is marked with two attributes:4105

PRONTYPE=ART, which indicates that it is an article (as opposed to another type of deter-4106

5Case is marked in English for some personal pronouns, e.g., She saw her, They saw them.
6The annotation and tagging of morphosyntactic attributes can be traced back to earlier work on Turk-

ish (Oflazer and Kuruöz, 1994) and Czech (Hajič and Hladká, 1998). MULTEXT-East was an early multilin-
gual corpus to include morphosyntactic attributes (Dimitrova et al., 1998).

Jacob Eisenstein. Draft of June 20, 2018.
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Figure 8.1: UD and PTB part-of-speech tags, and UD morphosyntactic attributes. Example
selected from the UD 1.4 English corpus.

8.2 Morphosyntactic Attributes4096

There is considerably more to say about a word than whether it is a noun or a verb: in En-4097

glish, verbs are distinguish by features such tense and aspect, nouns by number, adjectives4098

by degree, and so on. These features are language-specific: other languages distinguish4099

other features, such as case (the role of the noun with respect to the action of the sen-4100

tence, which is marked in languages such as Latin and German5) and evidentiality (the4101

source of information for the speaker’s statement, which is marked in languages such as4102

Turkish). In the UD corpora, these attributes are annotated as feature-value pairs for each4103

token.64104

An example is shown in Figure 8.1. The determiner the is marked with two attributes:4105

PRONTYPE=ART, which indicates that it is an article (as opposed to another type of deter-4106

5Case is marked in English for some personal pronouns, e.g., She saw her, They saw them.
6The annotation and tagging of morphosyntactic attributes can be traced back to earlier work on Turk-

ish (Oflazer and Kuruöz, 1994) and Czech (Hajič and Hladká, 1998). MULTEXT-East was an early multilin-
gual corpus to include morphosyntactic attributes (Dimitrova et al., 1998).

Jacob Eisenstein. Draft of June 20, 2018.



Word Segmentation

theprophetsaidtothecity

8.4. TOKENIZATION 195

(1) Âá
Japanese

‡Z
octopus

�º
how

™?

say

How to say octopus in Japanese?

(2) Â
Japan

á‡
essay

Z
fish

�º
how

™?

say

Figure 8.3: An example of tokenization ambiguity in Chinese (Sproat et al., 1996)

— more than could be observed in any annotated corpus. Tokens or spans that match an4165

entry in a gazetteer can receive special features; this provides a way to incorporate hand-4166

crafted resources such as name lists in a learning-driven framework.4167

Neural sequence labeling for NER Current research has emphasized neural sequence4168

labeling, using similar LSTM models to those employed in part-of-speech tagging (Ham-4169

merton, 2003; Huang et al., 2015; Lample et al., 2016). The bidirectional LSTM-CRF (Fig-4170

ure 7.4 in § 7.6) does particularly well on this task, due to its ability to model tag-to-tag4171

dependencies. However, Strubell et al. (2017) show that convolutional neural networks4172

can be equally accurate, with significant improvement in speed due to the efficiency of4173

implementing ConvNets on graphics processing units (GPUs). The key innovation in4174

this work was the use of dilated convolution, which is described in more detail in § 3.4.4175

8.4 Tokenization4176

A basic problem for text analysis, first discussed in § 4.3.1, is to break the text into a se-4177

quence of discrete tokens. For alphabetic languages such as English, deterministic scripts4178

suffice to achieve accurate tokenization. However, in logographic writing systems such4179

as Chinese script, words are typically composed of a small number of characters, with-4180

out intervening whitespace. The tokenization must be determined by the reader, with4181

the potential for occasional ambiguity, as shown in Figure 8.3. One approach is to match4182

character sequences against a known dictionary (e.g., Sproat et al., 1996), using additional4183

statistical information about word frequency. However, no dictionary is completely com-4184

prehensive, and dictionary-based approaches can struggle with such out-of-vocabulary4185

words.4186

Chinese tokenization has therefore been approached as a supervised sequence label-4187

ing problem. Xue et al. (2003) train a logistic regression classifier to make independent4188

segmentation decisions while moving a sliding window across the document. A set of4189

rules is then used to convert these individual classification decisions into an overall tok-4190

enization of the input. However, these individual decisions may be globally suboptimal,4191

motivating a structure prediction approach. Peng et al. (2004) train a conditional random4192

Under contract with MIT Press, shared under CC-BY-NC-ND license.



Code Switching

196 CHAPTER 8. APPLICATIONS OF SEQUENCE LABELING

field to predict labels of START or NONSTART on each character. More recent work has4193

employed neural network architectures. For example, Chen et al. (2015) use an LSTM-4194

CRF architecture, as described in § 7.6: they construct a trellis, in which each tag is scored4195

according to the hidden state of an LSTM, and tag-tag transitions are scored according4196

to learned transition weights. The best-scoring segmentation is then computed by the4197

Viterbi algorithm.4198

8.5 Code switching4199

Multilingual speakers and writers do not restrict themselves to a single language. Code4200

switching is the phenomenon of switching between languages in speech and text (Auer,4201

2013; Poplack, 1980). Written code switching has become more common in online social4202

media, as in the following extract from Justin Trudeau’s website:74203

(8.39) Although everything written on this site est
is

disponible
available

en
in

anglais
English

4204

and in French, my personal videos seront
will be

bilingues
bilingual

4205

Accurately analyzing such texts requires first determining which languages are being4206

used. Furthermore, quantitative analysis of code switching can provide insights on the4207

languages themselves and their relative social positions.4208

Code switching can be viewed as a sequence labeling problem, where the goal is to la-4209

bel each token as a candidate switch point. In the example above, the words est, and, and4210

seront would be labeled as switch points. Solorio and Liu (2008) detect English-Spanish4211

switch points using a supervised classifier, with features that include the word, its part-of-4212

speech in each language (according to a supervised part-of-speech tagger), and the prob-4213

abilities of the word and part-of-speech in each language. Nguyen and Dogruöz (2013)4214

apply a conditional random field to the problem of detecting code switching between4215

Turkish and Dutch.4216

Code switching is a special case of the more general problem of word level language4217

identification, which Barman et al. (2014) address in the context of trilingual code switch-4218

ing between Bengali, English, and Hindi. They further observe an even more challenging4219

phenomenon: intra-word code switching, such as the use of English suffixes with Bengali4220

roots. They therefore mark each token as either (1) belonging to one of the three languages;4221

(2) a mix of multiple languages; (3) “universal” (e.g., symbols, numbers, emoticons); or4222

(4) undefined.4223

7As quoted in http://blogues.lapresse.ca/lagace/2008/09/08/
justin-trudeau-really-parfait-bilingue/, accessed August 21, 2017.

Jacob Eisenstein. Draft of June 20, 2018.



Dialog Acts

8.6. DIALOGUE ACTS 197

Speaker Dialogue Act Utterance

A YES-NO-QUESTION So do you go college right now?
A ABANDONED Are yo-
B YES-ANSWER Yeah,
B STATEMENT It’s my last year [laughter].
A DECLARATIVE-QUESTION You’re a, so you’re a senior now.
B YES-ANSWER Yeah,
B STATEMENT I’m working on my projects trying to graduate [laughter]
A APPRECIATION Oh, good for you.
B BACKCHANNEL Yeah.

Figure 8.4: An example of dialogue act labeling (Stolcke et al., 2000)

8.6 Dialogue acts4224

The sequence labeling problems that we have discussed so far have been over sequences4225

of word tokens or characters (in the case of tokenization). However, sequence labeling4226

can also be performed over higher-level units, such as utterances. Dialogue acts are la-4227

bels over utterances in a dialogue, corresponding roughly to the speaker’s intention —4228

the utterance’s illocutionary force (Austin, 1962). For example, an utterance may state a4229

proposition (it is not down on any map), pose a question (shall we keep chasing this murderous4230

fish?), or provide a response (aye aye!). Stolcke et al. (2000) describe how a set of 42 dia-4231

logue acts were annotated for the 1,155 conversations in the Switchboard corpus (Godfrey4232

et al., 1992).84233

An example is shown in Figure 8.4. The annotation is performed over UTTERANCES,4234

with the possibility of multiple utterances per conversational turn (in cases such as inter-4235

ruptions, an utterance may split over multiple turns). Some utterances are clauses (e.g., So4236

do you go to college right now?), while others are single words (e.g., yeah). Stolcke et al. (2000)4237

report that hidden Markov models (HMMs) achieve 96% accuracy on supervised utter-4238

ance segmentation. The labels themselves reflect the conversational goals of the speaker:4239

the utterance yeah functions as an answer in response to the question you’re a senior now,4240

but in the final line of the excerpt, it is a backchannel (demonstrating comprehension).4241

For task of dialogue act labeling, Stolcke et al. (2000) apply a hidden Markov model.4242

The probability p(wm | ym) must generate the entire sequence of words in the utterance,4243

and it is modeled as a trigram language model (§ 6.1). Stolcke et al. (2000) also account4244

for acoustic features, which capture the prosody of each utterance — for example, tonal4245

and rhythmic properties of speech, which can be used to distinguish dialogue acts such4246

8Dialogue act modeling is not restricted to speech; it is relevant in any interactive conversation. For
example, Jeong et al. (2009) annotate a more limited set of speech acts in a corpus of emails and online
forums.

Under contract with MIT Press, shared under CC-BY-NC-ND license.



Beyond Token Labels:
Syntax and Parsing



Chomsky Hierarchy
• Let Caps = nonterminals; lower = terminals; Greek = strings 

of terms/nonterms

• Recursively enumerable (Turing equivalent)

✤ Rules: α →β

• Context-sensitive

✤ Rules: αAβ→αγβ

• Context-free
✤ Rules:  A→α

• Regular (finite-state)

✤ Rules: A→aB ;  A→a



Constituency Structure1. The linguistic structure of sentences – two views: Constituency 
= phrase structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents

Starting unit: words 
 the,   cat,   cuddly,   by,   door

Words combine into phrases
 the cuddly cat,       by the door

Phrases can combine into bigger phrases
 the cuddly cat by the door

 
12



Constituency StructureThe linguistic structure of sentences – two views: Constituency = 
phrase structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents.

                         the            cat
                         a                dog
                                 large                 in a crate
                                 barking            on the table
                                 cuddly              by the door
  large           barking
talk to
walked behind

14



Dependency Structure

• Dependency structure shows which words 
depend on (modify, attach to, or are 
arguments of) which other words.

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking



Dependency Structure

• Dependency structure shows which words 
depend on (modify, attach to, or are 
arguments of) which other words.

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking



Why Syntax?

• Humans communicate complex ideas by composing words 
together into bigger units to convey complex meanings.

• Human listeners need to work out what modifies 
[attaches to] what. Explain human processing speed and 
errors.

• A model needs to understand sentence structure in order 
to be able to interpret language correctly, but it may not 
structure it in the same way as linguistic theories.

• Most usefully for NLP, linguistics gives us a vocabulary for 
describing phenomena and makes predictions about data.



Prepositional Attachment
Prepositional phrase attachment ambiguity

19



Prepositional AttachmentPrepositional phrase attachment ambiguity

Scientists count whales from space

Scientists count whales from space

✓

20



Ambiguities MultiplyPP attachment ambiguities multiply

• A key parsing decision is how we ‘attach’ various constituents
• PPs, adverbial or participial phrases, infinitives, coordinations, etc.

• Catalan numbers: Cn = (2n)!/[(n+1)!n!]

• An exponentially growing series, which arises in many tree-like contexts:
• E.g., the number of possible triangulations of a polygon with n+2 sides

• Turns up in triangulation of probabilistic graphical models (CS228)….21



Coordination Scope AmbiguityCoordination scope ambiguity

24



VP Attachment AmbiguityVerb Phrase (VP) attachment ambiguity

26



Morphological Ambiguity



Syntactic Ambiguity

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Effects of V/N Ambiguity (1)

S

NP VP

NNP

Fed

V NP

raises

interest rates

NN NN

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Effects of V/N Ambiguity (2)

S

NP VP

N

Fed

N NP

raises interest

rates

V

N

Andrew McCallum, UMass Amherst,

 including material from Chris Manning and Jason Eisner

Effects of V/N Ambiguity (3)

S

NP VP

N

Fed

N NP

raises interest rates

N V

NCD

%0.5



More Ambiguity
• Iraqi Head Seeks Arms 

• Juvenile Court to Try Shooting Defendant 

• Teacher Strikes Idle Kids 

• Stolen Painting Found by Tree 

• Kids Make Nutritious Snacks 

• Local HS Dropouts Cut in Half 

• British Left Waffles on Falkland Islands 

• Red Tape Holds Up New Bridges 

• Clinton Wins on Budget, but More Lies Ahead 

• Ban on Nude Dancing on Governor’s Desk



Dependencies Mapping 
to Semantics

Dependency paths help extract semantic interpretation – 
simple practical example: extracting protein-protein interaction

KaiC nsubj  interacts  nmod:with ➔ SasA
KaiC nsubj  interacts nmod:with ➔ SasA  conj:and➔ KaiA
KaiC nsubj  interacts nmod:with ➔ SasA  conj:and➔ KaiB

 [Erkan et al. EMNLP 07, Fundel et al. 2007, etc.]

demonstrated

results

KaiC

interacts

rythmically

nsubj

The

mark
det

ccomp

that
nsubj 

KaiBKaiA

SasA

conj:and

conj:and
advmod

nmod:with

with and
cc

case

27



Dependency Structure
2. Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

submitted

Bills were

Senatorby

immigration

Brownback

andon

ports
Republican

of

Kansas

28
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Dependency Structure
2. Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

submitted

Bills were

Senatorby

immigration

Brownback

andon

ports
Republican

of

Kansas

28

Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

The arrows are 
commonly typed 
with the name of 
grammatical 
relations (subject, 
prepositional object, 
apposition, etc.)

submitted

Bills were

Senatorby

nsubj:pass aux obl

case

immigration

conj

Brownback

cc

andon

case

nmod
ports flat

Republican

of
case

nmod
Kansas

appos

29



Dependency Structure
2. Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

submitted

Bills were

Senatorby

immigration

Brownback

andon

ports
Republican

of

Kansas

28

Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

An arrow connects a head 
with a dependent

Usually, dependencies 
form a tree (a connected, 
acyclic, single-root graph)

submitted

Bills were

Senatorby

nsubj:pass aux obl

case

immigration

conj

Brownback

cc

andon

case

nmod
ports flat

Republican

of
case

nmod
Kansas

appos

30



Panini’s Grammar (5c BCE)Pāṇini’s grammar (c. 5th century BCE)

Gallery: http://wellcomeimages.org/indexplus/image/L0032691.html
CC BY 4.0 File:Birch bark MS from Kashmir of the Rupavatra Wellcome L0032691.jpg
But this comes from much later – originally the grammar was oral

31



Parsing History
Dependency Grammar/Parsing History

• The idea of dependency structure goes back a long way
• To Pāṇini’s grammar (c. 5th century BCE)
• Basic approach of 1st millennium Arabic grammarians

• Constituency/context-free grammar is a new-fangled invention
• 20th century invention (R.S. Wells, 1947; then Chomsky 1953, etc.)

• Modern dependency work is often sourced to Lucien Tesnière (1959)
• Was dominant approach in “East” in 20th Century (Russia, China, …)

• Good for free-er word order, inflected languages like Russian (or Latin!)
• Used in some of the earliest parsers in NLP, even in the US:

• David Hays, one of the founders of U.S. computational linguistics, built early (first?) 
dependency parser (Hays 1962) and published on dependency grammar in Language

32



Dependency Parsing

ROOT Discussion of the outstanding issues was completed  .

• Some people draw the arrows one way; some the other way! 
• Tesnière had them point from head to dependent – we follow that convention

• We usually add a fake ROOT so every word is a dependent of precisely 1 other node

Dependency Grammar and Dependency Structure

33



Dependency TreebanksThe rise of annotated data & Universal Dependencies treebanks

Brown corpus (1967; PoS tagged 1979); Lancaster-IBM Treebank (starting late 1980s); 
Marcus et al. 1993, The Penn Treebank, Computational Linguistics;
Universal Dependencies: http://universaldependencies.org/

34



Dependency Treebanks
The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful than writing a grammar 
(by hand)

But a treebank gives us many things
• Reusability of the labor

• Many parsers, part-of-speech taggers, etc. can be built on it
• Valuable resource for linguistics

• Broad coverage, not just a few intuitions
• Frequencies and distributional information
• A way to evaluate NLP systems

35



Dependency Features
What are the straightforward sources of information for dependency parsing?
1. Bilexical affinities    The dependency [discussion → issues] is plausible
2. Dependency distance   Most dependencies are between nearby words
3. Intervening material     Dependencies rarely span intervening verbs or punctuation
4. Valency of heads   How many dependents on which side are usual for a head?

ROOT Discussion of the outstanding issues was completed  .

Dependency Conditioning Preferences
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Dependency Parsing
Dependency Parsing

• A sentence is parsed by choosing for each word what other word (including ROOT) it is 
a dependent of

• Usually some constraints:
• Only one word is a dependent of ROOT
• Don’t want cycles A → B, B → A

• This makes the dependencies a tree
• Final issue is whether arrows can cross (be non-projective) or not

I give a on neuraltalk tomorrowROOT ’ll networks
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Projectivity
• Definition of a projective parse: There are no crossing dependency arcs when the 

words are laid out in their linear order, with all arcs above the words
• Dependencies corresponding to a CFG tree must be projective

• I.e., by forming dependencies by taking 1 child of each category as head
• Most syntactic structure is projective like this, but dependency theory normally does 

allow non-projective structures to account for displaced constituents
• You can’t easily get the semantics of certain constructions right without these 

nonprojective dependencies

Who  did  Bill  buy  the  coffee  from  yesterday  ?

Projectivity
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Dependency Parsing
3. Methods of Dependency Parsing

1. Dynamic programming
Eisner (1996) gives a clever algorithm with complexity O(n3), by producing parse items 
with heads at the ends rather than in the middle

2. Graph algorithms
You create a Minimum Spanning Tree for a sentence
McDonald et al.’s (2005) O(n2) MSTParser scores dependencies independently using an 
ML classifier (he uses MIRA, for online learning, but it can be something else)
Neural graph-based parser: Dozat and Manning (2017) et seq. – very successful!

3. Constraint Satisfaction 
Edges are eliminated that don’t satisfy hard constraints. Karlsson (1990), etc.

4. “Transition-based parsing” or “deterministic dependency parsing”
Greedy choice of attachments guided by good machine learning classifiers
E.g., MaltParser (Nivre et al. 2008). Has proven highly effective. And fast.
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Greedy Transition-Based Parsing
Greedy transition-based parsing [Nivre 2003]

• A simple form of a greedy discriminative dependency parser
• The parser does a sequence of bottom-up actions

• Roughly like “shift” or “reduce” in a shift-reduce parser – CS143, anyone?? – but the 
“reduce” actions are specialized to create dependencies with head on left or right

• The parser has:
• a stack σ, written with top to the right

• which starts with the ROOT symbol
• a buffer β, written with top to the left

• which starts with the input sentence
• a set of dependency arcs A

• which starts off empty
• a set of actions
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Transition-Based Parsing
Basic transition-based dependency parser

Start: σ = [ROOT], β = w1, …, wn , A = ∅ 

1. Shift              σ, wi|β, A ➔ σ|wi, β, A
2. Left-Arcr      σ|wi|wj, β, A ➔ σ|wj, β, A∪{r(wj,wi)} 
3. Right-Arcr    σ|wi|wj, β, A ➔ σ|wi, β, A∪{r(wi,wj)}
Finish: σ = [w], β = ∅
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Transition-Based ParsingArc-standard transition-based parser
(there are other transition schemes …)
Analysis of “I ate fish”

ate fish[root]
Start

I

[root]
Shift

I ate fish

ate[root] fish
Shift

I

Start: σ = [ROOT], β = w1, …, wn , A = ∅ 
1. Shift              σ, wi|β, A ➔ σ|wi, β, A
2. Left-Arcr      σ|wi|wj, β, A ➔ 
                                 σ|wj, β, A∪{r(wj,wi)} 
3. Right-Arcr    σ|wi|wj, β, A ➔ 
                                 σ|wi, β, A∪{r(wi,wj)}
Finish: σ = [w], β = ∅ 
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Transition-Based Parsing
Arc-standard transition-based parser
Analysis of “I ate fish”

ate[root] ate[root]
Left Arc

I
A +=
nsubj(ate → I)

ate fish[root] ate fish[root]
Shift

ate[root] [root]
Right Arc

A +=
obj(ate → fish)fish ate

ate[root] [root]
Right Arc

A +=
root([root] → ate)
Finish
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A = { nsubj(ate → I),
          obj(ate → fish)
          root([root] → ate) } 

Nota bene:
In this example 
I’ve at each step 
made the 
“correct” next 
transition.
But a parser has 
to work this out – 
by exploring or 
inferring!



MaltParser
Nivre & Hall 2005MaltParser [Nivre and Hall 2005]

• We have left to explain how we choose the next action 
• Answer: Stand back, I know machine learning!

• Each action is predicted by a discriminative classifier (e.g., softmax classifier) over each 
legal move
• Max of 3 untyped choices (max of |R| × 2 + 1 when typed)
• Features: top of stack word, POS; first in buffer word, POS; etc.

• There is NO search (in the simplest form)
• But you can profitably do a beam search if you wish (slower but better): 

• You keep k good parse prefixes at each time step
• The model’s accuracy is fractionally below the state of the art in dependency parsing, 

but
• It provides very fast linear time parsing, with high accuracy – great for parsing the web
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Evaluating DependenciesEvaluation of Dependency Parsing: (labeled) dependency accuracy

                  ROOT   She  saw   the   video   lecture 
                       0         1      2       3         4            5

Gold
1   2  She   nsubj
2   0  saw   root 
3   5  the   det
4   5  video  nn
5   2    lecture obj

Parsed
1   2  She   nsubj
2   0  saw   root 
3   4  the   det
4   5  video  nsubj
5   2    lecture ccomp 

Acc  =   # correct deps
     # of deps

UAS =  4 / 5  =  80%
LAS  =  2 / 5  =  40%
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Graph-Based ParsingGraph-based dependency parsers

56

• Compute a score for every possible dependency for each word
• Doing this well requires good “contextual” representations of each word token, 

which we will develop in coming lectures 

  ROOT          The            big            cat          sat

0.5

0.3

0.8

2.0

e.g., picking the head for “big”



Graph-Based Parsing
Graph-based dependency parsers

57

• Compute a score for every possible dependency (choice of head) for each word
• Doing this well requires more than just knowing the two words 
• We need good “contextual” representations of each word token, which we will 

develop in the coming lectures 
• Repeat the same process for each other word; find the best parse (MST algorithm)

  ROOT          The            big            cat          sat

0.5

0.3

0.8

2.0

e.g., picking the head for “big”


