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Making Classifiers Better

• Better features, representations (HW2)

• Better output representations

• discrete, continuous, ordinal, structured

• Train lots of classifiers and combine them

• ensemble methods, bagging

• Train later classifiers to fix up earlier ones

• boosting, stacking
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Ensemble Classifiers

θ1 ⋅ f1(x, y) = ψ1

θ2 ⋅ f2(x, y) = ψ2

θ3 ⋅ f3(x, y) = ψ3

θn ⋅ fn(x, y) = ψn

…

α ⋅ g( ⃗ψ , y)

If g just 
concatenated its input, 

this would just be a 
linear model



Stacked Classifiers



Stacked Classifiers

θ1 ⋅ f1(x, y) = ψ1



Stacked Classifiers

θ1 ⋅ f1(x, y) = ψ1

θ2 ⋅ f2(x, y) + α2 ⋅ g(ψ1, y) = ψ2



Stacked Classifiers

θ1 ⋅ f1(x, y) = ψ1

θ2 ⋅ f2(x, y) + α2 ⋅ g(ψ1, y) = ψ2

…
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Stacked Classifiers

Byl jasný studený dubnový den a hodiny odbíjely třináctou

jasný  den
(“bright day”)

jasný  N
(“bright NOUN”)

V A A A N J N V C

A  N
preceding 

conjunction A  N

“It bright cold day April and clocks were thirteen”was a in the striking

• Example: dependency parsing

• i.e., predict directed edges using PoS tags



Why Nonlinear Models?

• Theoretical advances in deep learning: 
gradient-based optimization of complicated 
computational graphs

• In NLP, word embeddings give a 
distributed (non-one-hot) representation of 
words

• Practical advances in GPU hardware and 
other systems issues



Other Nonlinear Models?

• Kernel methods generalize nearest-
neighbor classifiers, project data into higher 
dimensions

• Decision trees and forests

• Boosting and other ensemble methods

• Not covered in this course



A Stacked Classifier

• Predict features z from input x w/LogReg

• Predict output y from features z w/LogReg
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linear classification in natural language processing today.1 Historically, a few other non-1371

linear learning methods have been applied to language data:1372

• Kernel methods are generalizations of the nearest-neighbor classification rule, which1373

classifies each instance by the label of the most similar example in the training1374

set (Hastie et al., 2009). The application of the kernel support vector machine to1375

information extraction is described in chapter 17.1376

• Decision trees classify instances by checking a set of conditions. Scaling decision1377

trees to bag-of-words inputs is difficult, but decision trees have been successful in1378

problems such as coreference resolution (chapter 15), where more compact feature1379

sets can be constructed (Soon et al., 2001).1380

• Boosting and related ensemble methods work by combining the predictions of sev-1381

eral “weak” classifiers, each of which may consider only a small subset of features.1382

Boosting has been successfully applied to text classification (Schapire and Singer,1383

2000) and syntactic analysis (Abney et al., 1999), and remains one of the most suc-1384

cessful methods on machine learning competition sites such as Kaggle (Chen and1385

Guestrin, 2016).1386

3.1 Feedforward neural networks1387

Consider the problem of building a classifier for movie reviews. The goal is to predict1388

a label y 2 {GOOD, BAD, OKAY} from a representation of the text of each document, x.1389

But what makes a good movie? The story, acting, cinematography, soundtrack, and so1390

on. Now suppose the training set contains labels for each of these additional features,1391

z = [z1, z2, . . . , zKz ]
>. With such information, we could build a two-step classifier:1392

1. Use the text x to predict the features z. Specifically, train a logistic regression clas-1393

sifier to compute p(zk | x), for each k 2 {1, 2, . . . , Kz}.1394

2. Use the features z to predict the label y. Again, train a logistic regression classifier1395

to compute p(y | z). On test data, z is unknown, so we use the probabilities p(z | x)1396

from the first layer as the features.1397

This setup is shown in Figure 3.1, which describes the proposed classifier in a compu-1398

tation graph: the text features x are connected to the middle layer z, which in turn is1399

connected to the label y.1400

Since each zk 2 {0, 1}, we can treat p(zk | x) as a binary classification problem, using1401

binary logistic regression:1402

Pr(zk = 1 | x;⇥(x!z)) = �(✓(x!z)
k

· x) = (1 + exp(�✓(x!z)
k

· x))�1, [3.1]
1I will use “deep learning” and “neural networks” interchangeably.

Jacob Eisenstein. Draft of June 20, 2018.
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Figure 3.1: A feedforward neural network. Shaded circles indicate observed features,
usually words; squares indicate nodes in the computation graph, which are computed
from the information carried over the incoming arrows.

where �(·) is the sigmoid function (shown in Figure 3.2), and the matrix ⇥(x!z)
2 RKz⇥V1403

is constructed by stacking the weight vectors for each zk,1404

⇥(x!z) = [✓(x!z)
1 ,✓(x!z)

2 , . . . ,✓(x!z)
Kz

]>. [3.2]

We will assume that x contains a term with a constant value of 1, so that a corresponding1405

offset parameter is included in each ✓(x!z)
k

.1406

The output layer is computed by the multi-class logistic regression probability,1407

Pr(y = j | z;⇥(z!y), b) =
exp(✓(z!y)

j
· z + bj)

P
j02Y exp(✓(z!y)

j0 · z + bj0)
, [3.3]

where bj is an offset for label j, and the output weight matrix ⇥(z!y)
2 RKy⇥Kz is again1408

constructed by concatenation,1409

⇥(z!y) = [✓(z!y)
1 ,✓(z!y)

2 , . . . ,✓(z!y)
Ky

]>. [3.4]

The vector of probabilities over each possible value of y is denoted,1410

p(y | z;⇥(z!y), b) = SoftMax(⇥(z!y)z + b), [3.5]

where element j in the output of the SoftMax function is computed as in Equation 3.3.1411

We have now defined a multilayer classifier, which can be summarized as,

p(z | x;⇥(x!z)) =�(⇥(x!z)x) [3.6]

p(y | z;⇥(z!y), b) = SoftMax(⇥(z!y)z + b), [3.7]

where �(·) is now applied elementwise to the vector of inner products,1412

�(⇥(x!z)x) = [�(✓(x!z)
1 · x), �(✓(x!z)

2 · x), . . . , �(✓(x!z)
Kz

· x)]>. [3.8]

Under contract with MIT Press, shared under CC-BY-NC-ND license.
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Stacking w/Hidden z

• Use input text x to predict probability of z

• Use continuous z to predict output y
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Figure 3.2: The sigmoid, tanh, and ReLU activation functions

Now suppose that the hidden features z are never observed, even in the training data.
We can still construct the architecture in Figure 3.1. Instead of predicting y from a discrete
vector of predicted values z, we use the probabilities �(✓k · x). The resulting classifier is
barely changed:

z =�(⇥(x!z)x) [3.9]

p(y | x;⇥(z!y), b) = SoftMax(⇥(z!y)z + b). [3.10]

This defines a classification model that predicts the label y 2 Y from the base features x,1413

through a“hidden layer” z. This is a feedforward neural network.21414

3.2 Designing neural networks1415

This feedforward neural network can be generalized in a number of ways.1416

3.2.1 Activation functions1417

If the hidden layer is viewed as a set of latent features, then the sigmoid function repre-1418

sents the extent to which each of these features is “activated” by a given input. However,1419

the hidden layer can be regarded more generally as a nonlinear transformation of the in-1420

put. This opens the door to many other activation functions, some of which are shown in1421

Figure 3.2. At the moment, the choice of activation functions is more art than science, but1422

a few points can be made about the most popular varieties:1423

• The range of the sigmoid function is (0, 1). The bounded range ensures that a cas-1424

cade of sigmoid functions will not “blow up” to a huge output, and this is impor-1425

2The architecture is sometimes called a multilayer perceptron, but this is misleading, because each layer
is not a perceptron as defined in Algorithm 3.

Jacob Eisenstein. Draft of June 20, 2018.
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One Linear Model

1 0.0001 a

2 -0.00063 aardvark

3 0.047 able

… … …

V 0.000004 zyxt

θ(x→z)
1



Many Linear Models

1 0.0001 … 0.0026 a

2 -0.00063 … -0.004 aardvark

3 0.047 … 0.078 able

… … … … …

V 0.000004 … -0.0000293 zyxt

θ(x→z)
1 θ(x→z)

Kz



Transposed Parameter Matrix

1 2 3 … V

0.0001 -0.00063 0.047 … 0.000004

… … … … …

0.0026 -0.004 0.078 … -0.0000293

a aardvark able … zyxt

θ(x→z)
1

θ(x→z)
Kz

Θ(x→z)



Transposed Parameter Matrix

1 2 3 … V

0.0001 -0.00063 0.047 … 0.000004

… … … … …

0.0026 -0.004 0.078 … -0.0000293

a aardvark able … zyxt

θ(x→z)
1

θ(x→z)
Kz

Θ(x→z)

Word 
feature columns 

interpretable as word 
embeddings
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2 RKy⇥Kz is again1408

constructed by concatenation,1409

⇥(z!y) = [✓(z!y)
1 ,✓(z!y)

2 , . . . ,✓(z!y)
Ky
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The vector of probabilities over each possible value of y is denoted,1410
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�(⇥(x!z)x) = [�(✓(x!z)
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2 · x), . . . , �(✓(x!z)
Kz

· x)]>. [3.8]
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usually words; squares indicate nodes in the computation graph, which are computed
from the information carried over the incoming arrows.
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Now suppose that the hidden features z are never observed, even in the training data.
We can still construct the architecture in Figure 3.1. Instead of predicting y from a discrete
vector of predicted values z, we use the probabilities �(✓k · x). The resulting classifier is
barely changed:

z =�(⇥(x!z)x) [3.9]

p(y | x;⇥(z!y), b) = SoftMax(⇥(z!y)z + b). [3.10]

This defines a classification model that predicts the label y 2 Y from the base features x,1413

through a“hidden layer” z. This is a feedforward neural network.21414

3.2 Designing neural networks1415

This feedforward neural network can be generalized in a number of ways.1416

3.2.1 Activation functions1417

If the hidden layer is viewed as a set of latent features, then the sigmoid function repre-1418

sents the extent to which each of these features is “activated” by a given input. However,1419

the hidden layer can be regarded more generally as a nonlinear transformation of the in-1420

put. This opens the door to many other activation functions, some of which are shown in1421

Figure 3.2. At the moment, the choice of activation functions is more art than science, but1422

a few points can be made about the most popular varieties:1423

• The range of the sigmoid function is (0, 1). The bounded range ensures that a cas-1424

cade of sigmoid functions will not “blow up” to a huge output, and this is impor-1425

2The architecture is sometimes called a multilayer perceptron, but this is misleading, because each layer
is not a perceptron as defined in Algorithm 3.
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tant for deep networks with several hidden layers. The derivative of the sigmoid is1426
@

@a
�(a) = �(a)(1 � �(a)). This derivative becomes small at the extremes, which can1427

make learning slow; this is called the vanishing gradient problem.1428

• The range of the tanh activation function is (�1, 1): like the sigmoid, the range1429

is bounded, but unlike the sigmoid, it includes negative values. The derivative is1430
@

@a
tanh(a) = 1 � tanh(a)2, which is steeper than the logistic function near the ori-1431

gin (LeCun et al., 1998). The tanh function can also suffer from vanishing gradients1432

at extreme values.1433

• The rectified linear unit (ReLU) is zero for negative inputs, and linear for positive1434

inputs (Glorot et al., 2011),1435

ReLU(a) =

(
a, a � 0

0, otherwise.
[3.11]

The derivative is a step function, which is 1 if the input is positive, and zero oth-1436

erwise. Once the activation is zero, the gradient is also zero. This can lead to the1437

problem of dead neurons, where some ReLU nodes are zero for all inputs, through-1438

out learning. A solution is the leaky ReLU, which has a small positive slope for1439

negative inputs (Maas et al., 2013),1440

Leaky-ReLU(a) =

(
a, a � 0

.0001a, otherwise.
[3.12]

Sigmoid and tanh are sometimes described as squashing functions, because they squash1441

an unbounded input into a bounded range. Glorot and Bengio (2010) recommend against1442

the use of the sigmoid activation in deep networks, because its mean value of 1
2 can cause1443

the next layer of the network to be saturated, with very small gradients on their own1444

parameters. Several other activation functions are reviewed by Goodfellow et al. (2016),1445

who recommend ReLU as the “default option.”1446

3.2.2 Network structure1447

Deep networks stack up several hidden layers, with each z(d) acting as the input to the1448

next layer, z(d+1). As the total number of nodes in the network increases, so does its capac-1449

ity to learn complex functions of the input. For a fixed number of nodes, an architectural1450

decision is whether to emphasize width (large Kz at each layer) or depth (many layers).1451

At present, this tradeoff is not well understood.31452

3With even a single hidden layer, a neural network can approximate any continuous function on a closed
and bounded subset of RN to an arbitrarily small non-zero error; see section 6.4.1 of Goodfellow et al. (2016)
for a survey of these theoretical results. However, depending on the function to be approximated, the width
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Figure 3.1: A feedforward neural network. Shaded circles indicate observed features,
usually words; squares indicate nodes in the computation graph, which are computed
from the information carried over the incoming arrows.

where �(·) is the sigmoid function (shown in Figure 3.2), and the matrix ⇥(x!z)
2 RKz⇥V1403

is constructed by stacking the weight vectors for each zk,1404

⇥(x!z) = [✓(x!z)
1 ,✓(x!z)

2 , . . . ,✓(x!z)
Kz

]>. [3.2]

We will assume that x contains a term with a constant value of 1, so that a corresponding1405

offset parameter is included in each ✓(x!z)
k

.1406

The output layer is computed by the multi-class logistic regression probability,1407

Pr(y = j | z;⇥(z!y), b) =
exp(✓(z!y)

j
· z + bj)

P
j02Y exp(✓(z!y)

j0 · z + bj0)
, [3.3]

where bj is an offset for label j, and the output weight matrix ⇥(z!y)
2 RKy⇥Kz is again1408

constructed by concatenation,1409

⇥(z!y) = [✓(z!y)
1 ,✓(z!y)

2 , . . . ,✓(z!y)
Ky

]>. [3.4]

The vector of probabilities over each possible value of y is denoted,1410

p(y | z;⇥(z!y), b) = SoftMax(⇥(z!y)z + b), [3.5]

where element j in the output of the SoftMax function is computed as in Equation 3.3.1411

We have now defined a multilayer classifier, which can be summarized as,

p(z | x;⇥(x!z)) =�(⇥(x!z)x) [3.6]

p(y | z;⇥(z!y), b) = SoftMax(⇥(z!y)z + b), [3.7]

where �(·) is now applied elementwise to the vector of inner products,1412

�(⇥(x!z)x) = [�(✓(x!z)
1 · x), �(✓(x!z)

2 · x), . . . , �(✓(x!z)
Kz

· x)]>. [3.8]
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It is also possible to “short circuit” a hidden layer, by propagating information directly1453

from the input to the next higher level of the network. This is the idea behind residual net-1454

works, which propagate information directly from the input to the subsequent layer (He1455

et al., 2016),1456

z = f(⇥(x!z)x) + x, [3.13]

where f is any nonlinearity, such as sigmoid or ReLU. A more complex architecture is
the highway network (Srivastava et al., 2015; Kim et al., 2016), in which an addition gate
controls an interpolation between f(⇥(x!z)x) and x:

t =�(⇥(t)x + b(t)) [3.14]

z =t � f(⇥(x!z)x) + (1 � t) � x, [3.15]

where � refers to an elementwise vector product, and 1 is a column vector of ones. The1457

sigmoid function is applied elementwise to its input; recall that the output of this function1458

is restricted to the range [0, 1]. Gating is also used in the long short-term memory (LSTM),1459

which is discussed in chapter 6. Residual and highway connections address a problem1460

with deep architectures: repeated application of a nonlinear activation function can make1461

it difficult to learn the parameters of the lower levels of the network, which are too distant1462

from the supervision signal.1463

3.2.3 Outputs and loss functions1464

In the multi-class classification example, a softmax output produces probabilities over
each possible label. This aligns with a negative conditional log-likelihood,

�L = �

NX

i=1

log p(y(i) | x(i); ⇥). [3.16]

where ⇥ = {⇥(x!z),⇥(z!y), b} is the entire set of parameters.1465

This loss can be written alternatively as follows:

ỹj ,Pr(y = j | x(i); ⇥) [3.17]

�L = �

NX

i=1

e
y(i) · log ỹ [3.18]

where e
y(i) is a one-hot vector of zeros with a value of 1 at position y(i). The inner product1466

between e
y(i) and log ỹ is also called the multinomial cross-entropy, and this terminology1467

is preferred in many neural networks papers and software packages.1468

of the hidden layer may need to be arbitrarily large. Furthermore, the fact that a network has the capacity to
approximate any given function does not say anything about whether it is possible to learn the function using
gradient-based optimization.
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Figure 3.2: The sigmoid, tanh, and ReLU activation functions

Now suppose that the hidden features z are never observed, even in the training data.
We can still construct the architecture in Figure 3.1. Instead of predicting y from a discrete
vector of predicted values z, we use the probabilities �(✓k · x). The resulting classifier is
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z =�(⇥(x!z)x) [3.9]

p(y | x;⇥(z!y), b) = SoftMax(⇥(z!y)z + b). [3.10]

This defines a classification model that predicts the label y 2 Y from the base features x,1413

through a“hidden layer” z. This is a feedforward neural network.21414

3.2 Designing neural networks1415

This feedforward neural network can be generalized in a number of ways.1416

3.2.1 Activation functions1417
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• The range of the sigmoid function is (0, 1). The bounded range ensures that a cas-1424

cade of sigmoid functions will not “blow up” to a huge output, and this is impor-1425

2The architecture is sometimes called a multilayer perceptron, but this is misleading, because each layer
is not a perceptron as defined in Algorithm 3.
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Figure 3.1: A feedforward neural network. Shaded circles indicate observed features,
usually words; squares indicate nodes in the computation graph, which are computed
from the information carried over the incoming arrows.

where �(·) is the sigmoid function (shown in Figure 3.2), and the matrix ⇥(x!z)
2 RKz⇥V1403

is constructed by stacking the weight vectors for each zk,1404

⇥(x!z) = [✓(x!z)
1 ,✓(x!z)

2 , . . . ,✓(x!z)
Kz

]>. [3.2]

We will assume that x contains a term with a constant value of 1, so that a corresponding1405

offset parameter is included in each ✓(x!z)
k

.1406

The output layer is computed by the multi-class logistic regression probability,1407

Pr(y = j | z;⇥(z!y), b) =
exp(✓(z!y)

j
· z + bj)

P
j02Y exp(✓(z!y)

j0 · z + bj0)
, [3.3]

where bj is an offset for label j, and the output weight matrix ⇥(z!y)
2 RKy⇥Kz is again1408

constructed by concatenation,1409

⇥(z!y) = [✓(z!y)
1 ,✓(z!y)

2 , . . . ,✓(z!y)
Ky

]>. [3.4]

The vector of probabilities over each possible value of y is denoted,1410

p(y | z;⇥(z!y), b) = SoftMax(⇥(z!y)z + b), [3.5]

where element j in the output of the SoftMax function is computed as in Equation 3.3.1411

We have now defined a multilayer classifier, which can be summarized as,

p(z | x;⇥(x!z)) =�(⇥(x!z)x) [3.6]

p(y | z;⇥(z!y), b) = SoftMax(⇥(z!y)z + b), [3.7]

where �(·) is now applied elementwise to the vector of inner products,1412

�(⇥(x!z)x) = [�(✓(x!z)
1 · x), �(✓(x!z)

2 · x), . . . , �(✓(x!z)
Kz

· x)]>. [3.8]
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It is also possible to “short circuit” a hidden layer, by propagating information directly1453

from the input to the next higher level of the network. This is the idea behind residual net-1454

works, which propagate information directly from the input to the subsequent layer (He1455

et al., 2016),1456

z = f(⇥(x!z)x) + x, [3.13]

where f is any nonlinearity, such as sigmoid or ReLU. A more complex architecture is
the highway network (Srivastava et al., 2015; Kim et al., 2016), in which an addition gate
controls an interpolation between f(⇥(x!z)x) and x:

t =�(⇥(t)x + b(t)) [3.14]

z =t � f(⇥(x!z)x) + (1 � t) � x, [3.15]

where � refers to an elementwise vector product, and 1 is a column vector of ones. The1457

sigmoid function is applied elementwise to its input; recall that the output of this function1458

is restricted to the range [0, 1]. Gating is also used in the long short-term memory (LSTM),1459

which is discussed in chapter 6. Residual and highway connections address a problem1460

with deep architectures: repeated application of a nonlinear activation function can make1461

it difficult to learn the parameters of the lower levels of the network, which are too distant1462

from the supervision signal.1463

3.2.3 Outputs and loss functions1464

In the multi-class classification example, a softmax output produces probabilities over
each possible label. This aligns with a negative conditional log-likelihood,

�L = �

NX

i=1

log p(y(i) | x(i); ⇥). [3.16]

where ⇥ = {⇥(x!z),⇥(z!y), b} is the entire set of parameters.1465

This loss can be written alternatively as follows:

ỹj ,Pr(y = j | x(i); ⇥) [3.17]

�L = �

NX

i=1

e
y(i) · log ỹ [3.18]

where e
y(i) is a one-hot vector of zeros with a value of 1 at position y(i). The inner product1466

between e
y(i) and log ỹ is also called the multinomial cross-entropy, and this terminology1467

is preferred in many neural networks papers and software packages.1468

of the hidden layer may need to be arbitrarily large. Furthermore, the fact that a network has the capacity to
approximate any given function does not say anything about whether it is possible to learn the function using
gradient-based optimization.
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where e
y(i) is a one-hot vector of zeros with a value of 1 at position y(i). The inner product1466

between e
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Figure 3.3: Backpropagation at a single node x in the computation graph. The values of
the predecessors va, vb, vc are the inputs to x, which computes vx, and passes it on to the
successors d and e. The gradients at the successors gd and ge are passed back to x, where
they are incorporated into the gradient gx, which is then passed back to the predecessors
a, b, and c.

3.3.2 Regularization and dropout1540

In linear classification, overfitting was addressed by augmenting the objective with a reg-1541

ularization term, �||✓||
2
2. This same approach can be applied to feedforward neural net-1542

works, penalizing each matrix of weights:1543

L =
NX

i=1

`(i) + �z!y||⇥
(z!y)

||
2
F + �x!z||⇥

(x!z)
||
2
F , [3.35]

where ||⇥||
2
F

=
P

i,j
✓2
i,j

is the squared Frobenius norm, which generalizes the L2 norm1544

to matrices. The bias parameters b are not regularized, as they do not contribute to the1545

sensitivity of the classifier to the inputs. In gradient-based optimization, the practical1546

effect of Frobenius norm regularization is that the weights “decay” towards zero at each1547

update, motivating the alternative name weight decay.1548

Another approach to controlling model complexity is dropout, which involves ran-1549

domly setting some computation nodes to zero during training (Srivastava et al., 2014).1550

For example, in the feedforward network, on each training instance, with probability ⇢ we1551

set each input xn and each hidden layer node zk to zero. Srivastava et al. (2014) recom-1552

mend ⇢ = 0.5 for hidden units, and ⇢ = 0.2 for input units. Dropout is also incorporated1553

in the gradient computation, so if node zk is dropped, then none of the weights ✓(x!z)
k

will1554

be updated for this instance. Dropout prevents the network from learning to depend too1555

much on any one feature or hidden node, and prevents feature co-adaptation, in which a1556
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It is also possible to train neural networks from other objectives, such as a margin loss.
In this case, it is not necessary to use softmax at the output layer: an affine transformation
of the hidden layer is enough:

 (y;x(i),⇥) =✓(z!y)
y · z + by [3.19]

`MARGIN(⇥;x(i), y(i)) = max
y 6=y(i)

⇣
1 + (y;x(i),⇥)� (y(i);x(i),⇥)

⌘

+
. [3.20]

In regression problems, the output is a scalar or vector (see § 4.1.2). For these problems, a1469

typical loss function is the squared error (y � ŷ)2 or squared norm ||y � ŷ||
2
2.1470

3.2.4 Inputs and lookup layers1471

In text classification, the input layer x can refer to a bag-of-words vector, where xj is1472

the count of word j. The input to the hidden unit zk is then
P

V

j=1 ✓(x!z)
j,k

xj , and word j is1473

represented by the vector ✓(x!z)
j

. This vector is sometimes described as the embedding of1474

word j, and can be learned from unlabeled data, using techniques discussed in chapter 14.1475

The columns of ⇥(x!z) are each Kz-dimensional word embeddings.1476

Chapter 2 presented an alternative view of text documents, as a sequence of word1477

tokens, w1, w2, . . . , wM . In a neural network, each word token wm is represented with1478

a one-hot vector, ewm 2 RV . The matrix-vector product ⇥(x!z)ewm returns the embed-1479

ding of word wm. The complete document can represented by horizontally concatenating1480

these one-hot vectors, W = [ew1 , ew2 , . . . , ewM ], and the bag-of-words representation can1481

be recovered from the matrix-vector product W1, which simply sums each row over the1482
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layer, because the first step is to lookup the embeddings for each word in the input text.1486

3.3 Learning neural networks1487

The feedforward network in Figure 3.1 can now be written in a more general form,

z  f(⇥(x!z)x(i)) [3.21]

ỹ  SoftMax
⇣
⇥(z!y)z + b

⌘
[3.22]

`(i)  � e
y(i) · log ỹ, [3.23]

where f is an elementwise activation function, such as � or ReLU.1488
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Let us now consider how to estimate the parameters ⇥(x!z),⇥(z!y) and b, using on-
line gradient-based optimization. The simplest such algorithm is stochastic gradient de-
scent (Algorithm 5). The relevant updates are,
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where ⌘(t) is the learning rate on iteration t, `(i) is the loss at instance (or minibatch) i, and1489

✓(x!z)
k

is column k of the matrix ⇥(x!z), and ✓(z!y)
k

is column k of ⇥(z!y).1490

The gradients of the negative log-likelihood on b and ✓(z!y)
k

are very similar to the
gradients in logistic regression,
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5
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@`(i)

@✓(z!y)
k,j

=�
@
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1
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=
⇣
Pr(y = j | z;⇥(z!y), b)� �

⇣
j = y(i)

⌘⌘
zk, [3.29]

where �
�
j = y(i)

�
is a function that returns one when j = y(i), and zero otherwise. The1491

gradient rb`(i) is similar to Equation 3.29.1492

The gradients on the input layer weights ⇥(x!z) can be obtained by applying the chain
rule of differentiation:
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n,k

[3.30]

=
@`(i)

@zk
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k

· x)
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n,k
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=
@`(i)
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⇥ f 0(✓(x!z)

k
· x)⇥ xn, [3.32]

where f 0(✓(x!z)
k

· x) is the derivative of the activation function f , applied at the input
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✓(x!z)
k

· x. For example, if f is the sigmoid function, then the derivative is,

@`(i)

@✓(x!z)
n,k

=
@`(i)

@zk
⇥ �(✓(x!z)

k
· x) ⇥ (1 � �(✓(x!z)

k
· x)) ⇥ xn [3.33]

=
@`(i)

@zk
⇥ zk ⇥ (1 � zk) ⇥ xn. [3.34]

For intuition, consider each of the terms in the product.1493

• If the negative log-likelihood `(i) does not depend much on zk, @`
(i)

@zk
! 0, then it1494

doesn’t matter how zk is computed, and so @`
(i)

@✓
(x!z)
n,k

! 0.1495

• If zk is near 1 or 0, then the curve of the sigmoid function (Figure 3.2) is nearly flat,1496

and changing the inputs will make little local difference. The term zk ⇥ (1 � zk) is1497

maximized at zk = 1
2 , where the slope of the sigmoid function is steepest.1498

• If xn = 0, then it does not matter how we set the weights ✓(x!z)
n,k

, so @`
(i)

@✓
(x!z)
n,k

= 0.1499

3.3.1 Backpropagation1500

In the equations above, the value @`
(i)

@zk
is reused in the derivatives with respect to each1501

✓(x!z)
n,k

. It should therefore be computed once, and then cached. Furthermore, we should1502

only compute any derivative once we have already computed all of the necessary “inputs”1503

demanded by the chain rule of differentiation. This combination of sequencing, caching,1504

and differentiation is known as backpropagation. It can be generalized to any directed1505

acyclic computation graph.1506

A computation graph is a declarative representation of a computational process. At1507

each node t, compute a value vt by applying a function ft to a (possibly empty) list of1508

parent nodes, ⇡t. For example, in a feedforward network with one hidden layer, there are1509

nodes for the input x(i), the hidden layer z, the predicted output ỹ, and the parameters1510

{⇥(x!z),⇥(z!y), b}. During training, there is also a node for the observed label y(i) and1511

the loss `(i). Computation graphs have three main types of nodes:1512

Variables. The variables include the inputs x, the hidden nodes z, the outputs y, and the1513

loss function. Inputs are variables that do not have parents. Backpropagation com-1514

putes the gradients with respect to all variables except the inputs, but does not up-1515

date the variables during learning.1516

Parameters. In a feedforward network, the parameters include the weights and offsets.1517

Parameter nodes do not have parents, and they are updated during learning.1518
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Let us now consider how to estimate the parameters ⇥(x!z),⇥(z!y) and b, using on-
line gradient-based optimization. The simplest such algorithm is stochastic gradient de-
scent (Algorithm 5). The relevant updates are,
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✓(x!z)
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· x. For example, if f is the sigmoid function, then the derivative is,
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For intuition, consider each of the terms in the product.1493

• If the negative log-likelihood `(i) does not depend much on zk, @`
(i)

@zk
! 0, then it1494

doesn’t matter how zk is computed, and so @`
(i)

@✓
(x!z)
n,k

! 0.1495

• If zk is near 1 or 0, then the curve of the sigmoid function (Figure 3.2) is nearly flat,1496

and changing the inputs will make little local difference. The term zk ⇥ (1 � zk) is1497

maximized at zk = 1
2 , where the slope of the sigmoid function is steepest.1498

• If xn = 0, then it does not matter how we set the weights ✓(x!z)
n,k

, so @`
(i)

@✓
(x!z)
n,k

= 0.1499

3.3.1 Backpropagation1500

In the equations above, the value @`
(i)

@zk
is reused in the derivatives with respect to each1501

✓(x!z)
n,k

. It should therefore be computed once, and then cached. Furthermore, we should1502

only compute any derivative once we have already computed all of the necessary “inputs”1503

demanded by the chain rule of differentiation. This combination of sequencing, caching,1504

and differentiation is known as backpropagation. It can be generalized to any directed1505

acyclic computation graph.1506

A computation graph is a declarative representation of a computational process. At1507

each node t, compute a value vt by applying a function ft to a (possibly empty) list of1508

parent nodes, ⇡t. For example, in a feedforward network with one hidden layer, there are1509

nodes for the input x(i), the hidden layer z, the predicted output ỹ, and the parameters1510

{⇥(x!z),⇥(z!y), b}. During training, there is also a node for the observed label y(i) and1511

the loss `(i). Computation graphs have three main types of nodes:1512

Variables. The variables include the inputs x, the hidden nodes z, the outputs y, and the1513

loss function. Inputs are variables that do not have parents. Backpropagation com-1514

putes the gradients with respect to all variables except the inputs, but does not up-1515

date the variables during learning.1516

Parameters. In a feedforward network, the parameters include the weights and offsets.1517

Parameter nodes do not have parents, and they are updated during learning.1518

Under contract with MIT Press, shared under CC-BY-NC-ND license.

Specifically for 
logistic (sigmoid)

No update for 
features at 0



Gradient Updates

68 CHAPTER 3. NONLINEAR CLASSIFICATION

Let us now consider how to estimate the parameters ⇥(x!z),⇥(z!y) and b, using on-
line gradient-based optimization. The simplest such algorithm is stochastic gradient de-
scent (Algorithm 5). The relevant updates are,
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Let us now consider how to estimate the parameters ⇥(x!z),⇥(z!y) and b, using on-
line gradient-based optimization. The simplest such algorithm is stochastic gradient de-
scent (Algorithm 5). The relevant updates are,
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· x. For example, if f is the sigmoid function, then the derivative is,
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For intuition, consider each of the terms in the product.1493

• If the negative log-likelihood `(i) does not depend much on zk, @`
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doesn’t matter how zk is computed, and so @`
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• If zk is near 1 or 0, then the curve of the sigmoid function (Figure 3.2) is nearly flat,1496

and changing the inputs will make little local difference. The term zk ⇥ (1 � zk) is1497

maximized at zk = 1
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3.3.1 Backpropagation1500

In the equations above, the value @`
(i)

@zk
is reused in the derivatives with respect to each1501
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n,k

. It should therefore be computed once, and then cached. Furthermore, we should1502

only compute any derivative once we have already computed all of the necessary “inputs”1503

demanded by the chain rule of differentiation. This combination of sequencing, caching,1504

and differentiation is known as backpropagation. It can be generalized to any directed1505

acyclic computation graph.1506

A computation graph is a declarative representation of a computational process. At1507

each node t, compute a value vt by applying a function ft to a (possibly empty) list of1508

parent nodes, ⇡t. For example, in a feedforward network with one hidden layer, there are1509

nodes for the input x(i), the hidden layer z, the predicted output ỹ, and the parameters1510

{⇥(x!z),⇥(z!y), b}. During training, there is also a node for the observed label y(i) and1511

the loss `(i). Computation graphs have three main types of nodes:1512

Variables. The variables include the inputs x, the hidden nodes z, the outputs y, and the1513

loss function. Inputs are variables that do not have parents. Backpropagation com-1514

putes the gradients with respect to all variables except the inputs, but does not up-1515

date the variables during learning.1516

Parameters. In a feedforward network, the parameters include the weights and offsets.1517

Parameter nodes do not have parents, and they are updated during learning.1518
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Algorithm 6 General backpropagation algorithm. In the computation graph G, every
node contains a function ft and a set of parent nodes ⇡t; the inputs to the graph are x(i).

1: procedure BACKPROP(G = {ft,⇡t}
T
t=1},x(i))

2: vt(n)  x(i)
n for all n and associated computation nodes t(n).

3: for t 2 TOPOLOGICALSORT(G) do . Forward pass: compute value at each node
4: if |⇡t| > 0 then
5: vt  ft(v⇡t,1 , v⇡t,2 , . . . , v⇡t,Nt

)

6: gobjective = 1 . Backward pass: compute gradients at each node
7: for t 2 REVERSE(TOPOLOGICALSORT(G)) do
8: gt  

P
t0:t2⇡t0

gt0 ⇥rvtvt0 . Sum over all t0 that are children of t, propagating
the gradient gt0 , scaled by the local gradientrvtvt0

9: return {g1, g2, . . . , gT }

Objective. The objective node is not the parent of any other node. Backpropagation begins1519

by computing the gradient with respect to this node.1520

If the computation graph is a directed acyclic graph, then it is possible to order the1521

nodes with a topological sort, so that if node t is a parent of node t0, then t < t0. This1522

means that the values {vt}Tt=1 can be computed in a single forward pass. The topolog-1523

ical sort is reversed when computing gradients: each gradient gt is computed from the1524

gradients of the children of t, implementing the chain rule of differentiation. The general1525

backpropagation algorithm for computation graphs is shown in Algorithm 6, and illus-1526

trated in Figure 3.3.1527

While the gradients with respect to each parameter may be complex, they are com-1528

posed of products of simple parts. For many networks, all gradients can be computed1529

through automatic differentiation. This means that end users need only specify the feed-1530

forward computation, and the gradients necessary for learning can be obtained automati-1531

cally. There are many software libraries that perform automatic differentiation on compu-1532

tation graphs, such as Torch (Collobert et al., 2011), TensorFlow (Abadi et al., 2016), and1533

DyNet (Neubig et al., 2017). One important distinction between these libraries is whether1534

they support dynamic computation graphs, in which the structure of the computation1535

graph varies across instances. Static computation graphs are compiled in advance, and1536

can be applied to fixed-dimensional data, such as bag-of-words vectors. In many natu-1537

ral language processing problems, each input has a distinct structure, requiring a unique1538

computation graph.1539
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