Linear Classifiers

CS6120: Natural Language Processing
Northeastern University

David Smith

Classification
as
Function Learning

Classification vs. LMs

® | anguage models exhibit analogies to
human abilities—we’ll return to LMs

shortly

® Naive Bayes trains simple LMs for
classification

® Now, a separate tradition of classification
as function learning (Cf. Breiman, 2001)

Bag-of-VWords Vectors

Original text i> Bag of words :> Feature vector

\
aardvark

best 0O y=Fiction

of X y=News

the

It was the

it was the >
worst of
?times;,,/

times 0 Y=Gossip

was

worst (O y=Sports

zyxt
<OFFSET>

P OO PFP ONODMNONDMNDMODNODNOPFrO O

P

f(x,y=News)

Bag-of-VWords Vectors

® Common in vector-space information retrieval
(Salton et al., 1960s) and good-old-fashioned
expert systems

® What values to assign to elements (here, words)!?

® |ntrospection: “Hmm, Moby Dick is about
whales... We'll make whale and harpoon positive
and lion negative...” (Cf. sentiment dictionaries)

® Try simple functions and find one that works:
binary, counts, tf-idf (log or sqgrt scaling?), ...

hfroehli.ch/2019/09/27/moby-dick-is-about-whales-or-why-should-we-count-words/

HEATHER FROEHLICH

ABOUT BLOG COLLABORATORS LINKS PRESENTATIONS & PAPERS WORKSHOPS

MOBY DICK ISABOUT WHALES, OR WHY SHOULD WE
COUNT WORDS?

Why are we interested in counting words? The immediate payoff is not always clear. Many of us are familiar with what | like to call the Moby Dick is

About Whales model of quantitative work, wherein we generate some kind of word-frequency chart and the most dominant words are terms that are

so central to the overall story being presented.

In the case made by Moby Dick is About Whales we get words like WHALE, BCAT, CAPTAIN, SEA presented as hugely important terms. Great! There
is no doubt that these terms are important to Moby Dick. However, and this is crucial: there is nothing terribly groundbreaking about discovering
these wards are central to the world of Moby Dick. In fact, it is nothing we couldn’t have discovered if we sat down and read the book ourselves.

(Another example of this phenomenon is ‘Shakespeare’s plays are about kincs and queens’, lest it sound like | am picking on the 19c Americanists.)

Words, Features, VVeights

® |mportant to keep separate in our minds

® sufficient statistics of a document we want
to classify;

® input values to the classifier;

® linear importance weights of each
component of the representation

P(x,y) =0-f(x,y) =) 0,f(x.y)
J

Weights for a Multiclass Problem

H(E,bicycle) =1 Q(S,bicycle) =0
H(E,bicicleta) =0 H(S,bicicleta) =1
Q(E,con) =1 H(S,con) =1

Q(E,ordinateur) =0 H(S,ordinateur) =0.

Sparse Representations

® Most word features will be 0 for most documents

® Manipulating lots of |V|-length vectors is
inefficient

® Compare inverted indices in IR

def compute score(x, y, weights):
total = 0
for feature, count in feature function(x,y).items():
total += weights[feature] + count
return total

Bag-of-VWords Vectors

Original text @ Bag of words :> Feature vector

\
aardvark

best 0O y=Fiction

of X y=News

the

It was the

it was the >
worst of
Etimes@,,,/

times 0 Y=Gossip

was

worst (O y=Sports

zyxt
<OFFSET>

P OO PFP ONODMNONDMNDMODNODNOPFrO O

P

f(x,y=News)

Naive Bayes is a Linear Classifier

y = arg max log p(x, y; 4,) = argmax log p(x | y; ¢) + log p(y;)
Yy Yy
|D|

log p(x | y; #) + log p(y:) = log | | 4., + log u,
=1

=) logg,,, +logu,
=1

=0 -1(x,y)

where 0 = [0V, 0; ...; 0]
0V = [log ¢, 1;log b, 55 ...;10g @, s log]

Perceptrons

Generative vs. Discriminative

® Naive Bayes learning maximizes the
likelihood of the data

® But data are constant during classification!

® |nstead, consider a simple model of concept
learning by an idealized neuron that
updates weights only when it makes a
mistake: the perceptron (McCullough &
Pitts, 1943)

Algorithm 3 Perceptron learning algorithm

1: procedure PERCEPTRON(z (1Y) /(1))
2 t< 0

3 0 0

4: repeat

5: t+—t+1

6 Select an instance 7

7 J < argmax, =1 . £)

8 if § # y¥) then

9 0t) — g(t—1) f(w(i)7y(i)) _ f(a;(i)jg)
10: else

11: o) gt—1)

12: until tired

13: return (%)

N K
NN o
AR AR

R S S
TR S S S s
R

Algorithm 4 Averaged perceptron learning algorithm

1: procedure AVG-PERCEPTRQN(w(er)j y(l‘N))
2 t<+0

3 00«0

4 repeat

5: t—t+1

6 Select an instance

7 § ¢ argmax, 0(=1) . £(z(@ y)

8 if j #) then

) 01 «— 90— 4 £(x® ¢y — f(x® g)
10: else
11: 9t) . gt—1)
12: m <~ m + 60
13: until tired
14: 0+ im

15: return 0

|l oss Functions

tn(0; 2", y1) = —logp(z", y1"); 6)

(07 y(z) — argmaxy 0 - f(m(z)a y)

lo1(0: 2D ¢ =
0-1(8; 2, 57) <1, otherwise

\

gPERCEPTRON(g; m(i)) y()) I;leagice f() 0 - f((Z))

3.0
2.5
2.0 |
15} '
10f === == = e
0.5 N, l
(7] S

= = 0/1loss
—— margin loss |-
- logistic loss |

loss

| | | | | | |
—920 —15 —-1.0 —05 00 05 10 15 20
0" f(x,y) — max, £, 0" f(x,v')

Perceptron vs. NB

® Both are convex, but only NB solvable in
closed form

® /\p can suffer infinite loss on a single
example (Why?)

® prreEpTRON treats all correct answers
equally (compare large margin methods)

Logistic Regression

From Classifier to Probability

From Classifier to Probability

Scoring function W(x,y) =60 f(x,y)

From Classifier to Probability

Scoring function W(x,y) =60 f(x,y)

Nonnegative u(x,y) = exp(6 - f(x,y))

From Classifier to Probability

Scoring function W(x,y) =60 f(x,y)

Nonnegative u(x,y) = exp(6 - f(x,y))
exp(0 - f(x,)

oint probability P, y;0) = o
Joint p / 3 e vy €XPO - f(x,)

From Classifier to Probability

Scoring function W(x,y) =60 f(x,y)

Nonnegative u(x,y) = exp(6 - f(x,y))
exp(0 - f(x,)

oint probability P, y;0) = o
Joint p / 3 e vy €XPO - f(x,)

eXp(e) f(xa y))
zyfey €Xp(9) f(x’ y/))

Conditional prob. p(y|x;0) =

Logistic Regression

exp(6 - f(x.))
3 ey €XD(0 - f(x,3)

py|x;0) =

Logistic Regression

exp(6 - f(x.))
3 ey €XD(0 - f(x,3)

py|x;0) =

€1 oarea @ XD, yD) = = 0+ f(x?,y?) + log Z exp(0 - f(x?,y"))
yeYy

Logistic Regression

exp(6 - f(x.))
3 ey €XD(0 - f(x,3)

py|x;0) =

€1 oarea @ XD, yD) = = 0+ f(x?,y?) + log Z exp(0 - f(x?,y"))
yeYy

(O:20,y7) = = 0 fx0,y?) + max 0 - fx?,y)

LﬂPerceptron ;
yEY

Priors/Regularization

In the original LogReg loss function

£ rogreg(0: X0,y D) = = 0 fx®, y0) +1og Y exp(6 - fx?, "))
yey

Priors/Regularization

In the original LogReg loss function

£ rogreg(0: X0,y D) = = 0 fx®, y0) +1og Y exp(6 - fx?, "))
yey
' . /
What if H(J,y(l)) — OO ¢

Priors/Regularization

In the original LogReg loss function

£ rogreg(0: X0,y D) = = 0 fx®, y0) +1og Y exp(6 - fx?, "))
yey
' . /
What if H(J,y(l)) — OO ¢

Do we think, a priori, that weights should be infinite! No!

Priors/Regularization

In the original LogReg loss function

£ rogreg(0: X0,y D) = = 0 fx®, y0) +1og Y exp(6 - fx?, "))
yey
' . /
What if H(J,y(l)) — OO ¢

Do we think, a priori, that weights should be infinite! No!

piy | x)=py|x;0) - pO)

Priors/Regularization

Maximum a Posteriori (MAP) loss function

£l ogreg(0: X0, y1) + 227

Priors/Regularization

Maximum a Posteriori (MAP) loss function

£l ogreg(0: X0, y1) + 227

1 1
i : 2N — 2 _ 2
Gaussian/L2 log N(6;0,6°) = 262”6’”2_ > Zj 0;

Priors/Regularization

Maximum a Posteriori (MAP) loss function

£l ogreg(0: X0, y1) + 227

1 1
i : 2N — 2 _ 2
Gaussian/L2 log N(6;0,6°) = 262”6’”2_ > Zj 0;

1 1
Laplace/Ll log L(6;0,0) = ——[|0], = - 3; 0,1

Priors/Regularization

Maximum a Posteriori (MAP) loss function

£l ogreg(0: X0, y1) + 227

1 1
i : 2N — 2 _ 2
Gaussian/L2 log N(6;0,6°) = 262”6’”2_ > Zj 0;

1 1
Laplace/Ll log L(9: 0.6) = = -6l = =+ D' 16

J
Generic variance term/Lagrange multiplier A

LogReg Gradients

LogReg Gradients

frocrec = — 6 - f(m(i)a y(i)) + log Z exXp (9 ' f(w(i)a y/)>

y'ey
1

18)4
_ | y
> yreyexp (0 f(x®,y"))

55 =

— f(2™,yD) + > exp (6’ - f(w(i),y’)) < f(z',y)

y' ey

LogReg Gradients

frocrec = — 6 - f(m(i)a y(i)) + log Z exXp (9 ' f(w(i)a y/)>

y' ey
1

_ (2) (%)
fx,y'") + > ey €XD (0 . f(m(z') D

25 =

< Y exp (8- F@,y) x Fl@,y)

y' ey

yey Lay €Y eXPp (9 f(CE(2 y//)>

LogReg Gradients

frocrec = — 6 - f(m(i)a y(i)) + log Z exXp (9 ' f(w(i)a y/)>

y'ey
! X
> yreyexp (0 f(x®,y"))

o _
00

— f(2™,yD) + > exp (6’ - f(w(i),y’)) < f(z',y)

y' ey

_ (i) (i) eXp (9 ' f(m(i)ay/)) OB,
Fa)+ 3 ey < S @)

y'ey Y

= — f(z'W,y) + Z p(y | £9:0) x f(x®,y)

y' ey

LogReg Gradients

frocrec = — 6 - f(m(i)a y(i)) + log Z exXp (9 ' f(w(i)a y/)>

y'ey
1

18)4
_ | y
> yreyexp (0 f(x®,y"))

55 =

— f(2™,yD) + > exp (6’ - f(w(i),y’)) < f(z',y)

y' ey

_ (i) (i) eXp (9 ' f(m(i)ay/)) OB,
Fa)+ 3 ey < S @)

y'ey Y

= — f(z'W,y) + Z p(y | £9:0) x f(x®,y)

y' ey

— _ f(a:(i), y(i)) + EY|X[f(m(i)7 y)]

LogReg Gradients

frocrec = — 6 - f(m(i)a y(i)) + log Z exXp (9 ' f(w(i)a y/)>

y' ey
1

o/
_ : X
D yrcy €XD (0 f(x®,y"))

25 =

— f(2™,yD) + > exp (6’ - f(w(i),y’)) < f(z',y)

y'ey

@) () exp (6 - f(z',y)) ()
a0, + 3 s 1)

y'ey Y

= — f(z'W,y) + Z p(y | £9:0) x f(x®,y)

y'ey

— _ f(a:(i), y(i)) + EY|X[f(m(i)7 y)]

. N
all data + L2 prior voLioere =30 -3 (£ .49) — Bl 4))

1=1

Gradient-Based Optimization

Batch

Gradient descent Ot — 90 — OV, L

for learning rate y
See also conjugate gradient, quasi-Newton methods

Online

Stochastic gradient descent 0tD « 90 — yOE[V L]

Single-example Update

- perceptron ;

i/,.:'-‘ "--: y

 .: xS,)]

(logistic regression)

Gradient-Based Optimization

Algorithm 5 Generalized gradient descent. The function BATCHER partitions the train-
ing set into B batches such that each instance appears in exactly one batch. In gradient
descent, B = 1; in stochastic gradient descent, B = N; in minibatch stochastic gradient
descent, 1 < B < N.

1: procedure GRADIENT-DESCENT(z"'N) | ¢y(1N) | [(1) BATCHER, Tinax)
2 0«0

3 t< 0

4: repeat

5: (bW, 632, ... bB)) « BATCHER(N)

6 forn € {1,2,...,B} do

7 t<—t+1

g 9(1) 9t=1) _ (), (D), @ 05") (" 05",y
9; if Converged(0(1:2-1)) then

10: return (%)

11: until ¢ > T

12: return %)

Reparameterizing LogReg

€Xp(9) f(-xa y))

p(y|x;0) = ,
2iyeqy €XP(O - fx, Y1)
N exp(@ - f(x, pos))

p(pOS ‘X, H) T

exp(@ - f(x,pos)) + exp(d - f(x, neg))
p(pos|x;0) = | 4 OPO fixneg)

CXP(Q 'f(xa pOS))
|

p(pos|x;0) =

I +exp(=0- [f(x,pos) — f(x,neg)])

Logistic Sigmoid

0.5
L1 gl 1 |
—6 —4 -2 0 2 4 6

Logistic Sigmoid

-

Squashing function:
[-0,00] =0, 1]

0.57r"’
| | ol | I |
—B6 -4 -2 0 2 4 6

Logistic Sigmoid

Squashing function:)
[-00,00] = [0, 1] /1
0.5+
Bias b = 0 here _‘,/
| b | o 1 1 |
—B6 -4 -2 0 2 4 6

Logistic

Sigmoid

Squashing function:) -
[-0,00] = [0, 1] 4l
0.5+
Bias b = 0 here _,,/
| | o 1
—6 —4 —2 0 v, Offset, scaled tanh

Logistic Sigmoid

1- s
Squashing function:
[-OO’OO] - [09 I] ///
0.5+,
Bias b = 0 here /
l 4 | 5
-6 -4 —2 0 Offset, scaled tanh
@ is a slope
O (X) — parameter

at Should My Inputs
Look Like?

N

N

Original text 4 Bag of words p Feature vector
~
O aardvark
o ..
1 best 0 y=Fiction
o ..
2 it
o ..
2 of X y=News
0 ..
It was the 2 the
best ofitimes 0 . |
it was the 2 tmes 0 y-Gossip
worst of 0
times 2 | was]
0o ..
1 worst (0 y=Sports
0 ..
0 zyxt
1 <OFFSET>
X

f(x ,y=News)

One-Hot Encoding

time fruit flies like a an arrow banana

Summary of Linear Classifiers

® Naive Bayes
® Pro:single-pass, closed-form estimation; probabilistic predictions
® Con: poor accuracy w/correlated features

® Perceptron

® Pro:online, error-driven learning; typically high accuracy w/
averaging

® Con: not probabilistic; stopping not well motivated
® Logistic regression
® Pro:error-driven + probabilistic; regularization well-motivated

® Con:logistic loss saturates/overtrains on correct labels

