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Classification
as

Function Learning



Classification vs. LMs

• Language models exhibit analogies to 
human abilities—we’ll return to LMs 
shortly

• Naive Bayes trains simple LMs for 
classification

• Now, a separate tradition of classification 
as function learning (Cf. Breiman, 2001)



Bag-of-Words Vectors
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Figure 2.1: The bag-of-words and feature vector representations, for a hypothetical text
classification task.

the space of labels Y is very large, and we want to model shared substructures between786

labels.787

It is common to add an offset feature at the end of the vector of word counts x, which788

is always 1. We then have to also add an extra zero to each of the zero vectors, to make the789

vector lengths match. This gives the entire feature vector f(x, y) a length of (V + 1) ⇥ K.790

The weight associated with this offset feature can be thought of as a bias for or against791

each label. For example, if we expect most documents to be spam, then the weight for792

the offset feature for y = SPAM should be larger than the weight for the offset feature for793

y = HAM.794

Returning to the weights ✓, where do they come from? One possibility is to set them
by hand. If we wanted to distinguish, say, English from Spanish, we can use English
and Spanish dictionaries, and set the weight to one for each word that appears in the
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Bag-of-Words Vectors
• Common in vector-space information retrieval 

(Salton et al., 1960s) and good-old-fashioned 
expert systems

• What values to assign to elements (here, words)?

• Introspection: “Hmm, Moby Dick is about 
whales… We’ll make whale and harpoon positive 
and lion negative…” (Cf. sentiment dictionaries)

• Try simple functions and find one that works: 
binary, counts, tf-idf (log or sqrt scaling?), …





Words, Features, Weights

• Important to keep separate in our minds

• sufficient statistics of a document we want 
to classify;

• input values to the classifier;

• linear importance weights of each 
component of the representation
Ψ(x, y) = θ ⋅ f(x, y) = ∑

j

θj fj(x, y)



Weights for a Multiclass Problem
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associated dictionary. For example,2

✓(E,bicycle) =1 ✓(S,bicycle) =0

✓(E,bicicleta) =0 ✓(S,bicicleta) =1

✓(E,con) =1 ✓(S,con) =1

✓(E,ordinateur) =0 ✓(S,ordinateur) =0.

Similarly, if we want to distinguish positive and negative sentiment, we could use posi-795

tive and negative sentiment lexicons (see § 4.1.2), which are defined by social psycholo-796

gists (Tausczik and Pennebaker, 2010).797

But it is usually not easy to set classification weights by hand, due to the large number798

of words and the difficulty of selecting exact numerical weights. Instead, we will learn the799

weights from data. Email users manually label messages as SPAM; newspapers label their800

own articles as BUSINESS or STYLE. Using such instance labels, we can automatically801

acquire weights using supervised machine learning. This chapter will discuss several802

machine learning approaches for classification. The first is based on probability. For a803

review of probability, consult Appendix A.804

2.1 Naı̈ve Bayes805

The joint probability of a bag of words x and its true label y is written p(x, y). Suppose806

we have a dataset of N labeled instances, {(x(i), y(i))}N
i=1, which we assume are indepen-807

dent and identically distributed (IID) (see § A.3). Then the joint probability of the entire808

dataset, written p(x(1:N), y(1:N)), is equal to
Q

N

i=1 p
X,Y

(x(i), y(i)).3809

What does this have to do with classification? One approach to classification is to set
the weights ✓ so as to maximize the joint probability of a training set of labeled docu-
ments. This is known as maximum likelihood estimation:

✓̂ = argmax
✓

p(x(1:N), y(1:N);✓) [2.8]

= argmax
✓

NY

i=1

p(x(i), y(i);✓) [2.9]

= argmax
✓

NX

i=1

log p(x(i), y(i);✓). [2.10]

2In this notation, each tuple (language, word) indexes an element in ✓, which remains a vector.
3The notation pX,Y (x(i), y(i)) indicates the joint probability that random variables X and Y take the

specific values x(i) and y(i) respectively. The subscript will often be omitted when it is clear from context.
For a review of random variables, see Appendix A.
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Sparse Representations

• Most word features will be 0 for most documents

• Manipulating lots of |V|-length vectors is 
inefficient

• Compare inverted indices in IR

def compute_score(x, y, weights):
    total = 0
    for feature, count in feature_function(x,y).items():
        total += weights[feature] + count
    return total
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the space of labels Y is very large, and we want to model shared substructures between786

labels.787

It is common to add an offset feature at the end of the vector of word counts x, which788

is always 1. We then have to also add an extra zero to each of the zero vectors, to make the789

vector lengths match. This gives the entire feature vector f(x, y) a length of (V + 1) ⇥ K.790

The weight associated with this offset feature can be thought of as a bias for or against791

each label. For example, if we expect most documents to be spam, then the weight for792

the offset feature for y = SPAM should be larger than the weight for the offset feature for793

y = HAM.794

Returning to the weights ✓, where do they come from? One possibility is to set them
by hand. If we wanted to distinguish, say, English from Spanish, we can use English
and Spanish dictionaries, and set the weight to one for each word that appears in the
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Naive Bayes is a Linear Classifier
̂y = arg max

y
log p(x, y; μ, ϕ) = arg max

y
log p(x ∣ y; ϕ) + log p(y; μ)

log p(x ∣ y; ϕ) + log p(y; μ) = log
|D|

∏
i=1

ϕy,wi
+ log μy

=
|D|

∑
i=1

log ϕy,wi
+ log μy

= θ ⋅ f(x, y)

where θ = [θ(1); θ(2); …; θ(K)]
θ(y) = [log ϕy,1; log ϕy,2; …; log ϕy,V; log μy]



Perceptrons



Generative vs. Discriminative

• Naive Bayes learning maximizes the 
likelihood of the data

• But data are constant during classification!

• Instead, consider a simple model of concept 
learning by an idealized neuron that 
updates weights only when it makes a 
mistake: the perceptron (McCullough & 
Pitts, 1943)



2.2. DISCRIMINATIVE LEARNING 41

Algorithm 3 Perceptron learning algorithm

1: procedure PERCEPTRON(x(1:N), y(1:N))
2: t 0
3: ✓(0)

 0
4: repeat
5: t t + 1
6: Select an instance i
7: ŷ  argmaxy ✓

(t�1)
· f(x(i), y)

8: if ŷ 6= y(i) then
9: ✓(t)

 ✓(t�1) + f(x(i), y(i))� f(x(i), ŷ)
10: else
11: ✓(t)

 ✓(t�1)

12: until tired
13: return ✓(t)

our choice of features. Why not forget about probability and learn the weights in an error-976

driven way? The perceptron algorithm, shown in Algorithm 3, is one way to do this.977

Here’s what the algorithm says: if you make a mistake, increase the weights for fea-978

tures that are active with the correct label y(i), and decrease the weights for features that979

are active with the guessed label ŷ. This is an online learning algorithm, since the clas-980

sifier weights change after every example. This is different from Naı̈ve Bayes, which981

computes corpus statistics and then sets the weights in a single operation — Naı̈ve Bayes982

is a batch learning algorithm. Algorithm 3 is vague about when this online learning pro-983

cedure terminates. We will return to this issue shortly.984

The perceptron algorithm may seem like a cheap heuristic: Naı̈ve Bayes has a solid985

foundation in probability, but the perceptron is just adding and subtracting constants from986

the weights every time there is a mistake. Will this really work? In fact, there is some nice987

theory for the perceptron, based on the concept of linear separability:988

Definition 1 (Linear separability). The dataset D = {(x(i), y(i))}N
i=1 is linearly separable iff989

(if and only if) there exists some weight vector ✓ and some margin ⇢ such that for every instance990

(x(i), y(i)), the inner product of ✓ and the feature function for the true label, ✓ · f(x(i), y(i)), is991

at least ⇢ greater than inner product of ✓ and the feature function for every other possible label,992

✓ · f(x(i), y0).993

9✓, ⇢ > 0 : 8(x(i), y(i)) 2 D, ✓ · f(x(i), y(i)) � ⇢ + max
y0 6=y(i)

✓ · f(x(i), y0). [2.35]

Linear separability is important because of the following guarantee: if your data is994
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2.3. LOSS FUNCTIONS AND LARGE-MARGIN CLASSIFICATION 43

Algorithm 4 Averaged perceptron learning algorithm

1: procedure AVG-PERCEPTRON(x(1:N),y(1:N))
2: t 0
3: ✓(0)

 0
4: repeat
5: t t + 1
6: Select an instance i
7: ŷ  argmaxy ✓

(t�1)
· f(x(i), y)

8: if ŷ 6= y(i) then
9: ✓(t)

 ✓(t�1) + f(x(i), y(i))� f(x(i), ŷ)
10: else
11: ✓(t)

 ✓(t�1)

12: m m + ✓(t)

13: until tired
14: ✓  1

t
m

15: return ✓

set. At this point, it is probably best to stop; this stopping criterion is known as early1031

stopping.1032

Generalization is the ability to make good predictions on instances that are not in1033

the training data. Averaging can be proven to improve generalization, by computing an1034

upper bound on the generalization error (Freund and Schapire, 1999; Collins, 2002).1035

2.3 Loss functions and large-margin classification1036

Naı̈ve Bayes chooses the weights ✓ by maximizing the joint log-likelihood log p(x(1:N), y(1:N)).1037

By convention, optimization problems are generally formulated as minimization of a loss1038

function. The input to a loss function is the vector of weights ✓, and the output is a non-1039

negative scalar, measuring the performance of the classifier on a training instance. The1040

loss `(✓;x(i), y(i)) is then a measure of the performance of the weights ✓ on the instance1041

(x(i), y(i)). The goal of learning is to minimize the sum of the losses across all instances in1042

the training set.1043

We can trivially reformulate maximum likelihood as a loss function, by defining the
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Loss Functions
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loss function to be the negative log-likelihood:

log p(x(1:N), y(1:N);✓) =
NX

i=1

log p(x(i), y(i);✓) [2.36]

`NB(✓;x(i), y(i)) = � log p(x(i), y(i);✓) [2.37]

✓̂ = argmin
✓

NX

i=1

`NB(✓;x(i), y(i)) [2.38]

= argmax
✓

NX

i=1

log p(x(i), y(i);✓). [2.39]

The problem of minimizing `NB is thus identical to the problem of maximum-likelihood1044

estimation.1045

Loss functions provide a general framework for comparing machine learning objec-1046

tives. For example, an alternative loss function is the zero-one loss,1047

`0-1(✓;x(i), y(i)) =

(
0, y(i) = argmaxy ✓ · f(x(i), y)

1, otherwise
[2.40]

The zero-one loss is zero if the instance is correctly classified, and one otherwise. The1048

sum of zero-one losses is proportional to the error rate of the classifier on the training1049

data. Since a low error rate is often the ultimate goal of classification, this may seem1050

ideal. But the zero-one loss has several problems. One is that it is non-convex,13 which1051

means that there is no guarantee that gradient-based optimization will be effective. A1052

more serious problem is that the derivatives are useless: the partial derivative with respect1053

to any parameter is zero everywhere, except at the points where ✓ ·f(x(i), y) = ✓ ·f(x(i), ŷ)1054

for some ŷ. At those points, the loss is discontinuous, and the derivative is undefined.1055

The perceptron optimizes the following loss function:1056

`PERCEPTRON(✓;x(i), y(i)) = max
y2Y

✓ · f(x(i), y) � ✓ · f(x(i), y(i)), [2.41]

When ŷ = y(i), the loss is zero; otherwise, it increases linearly with the gap between the1057

score for the predicted label ŷ and the score for the true label y(i). Plotting this loss against1058

the input maxy2Y ✓ · f(x(i), y) � ✓ · f(x(i), y(i)) gives a hinge shape, motivating the name1059

hinge loss.1060

13A function f is convex iff ↵f(xi)+(1�↵)f(xj) � f(↵xi+(1�↵)xj), for all ↵ 2 [0, 1] and for all xi and xj

on the domain of the function. In words, any weighted average of the output of f applied to any two points is
larger than the output of f when applied to the weighted average of the same two points. Convexity implies
that any local minimum is also a global minimum, and there are many effective techniques for optimizing
convex functions (Boyd and Vandenberghe, 2004). See Appendix B for a brief review.

Jacob Eisenstein. Draft of June 20, 2018.
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Figure 2.2: Margin, zero-one, and logistic loss functions.

2.3.1 Large margin classification1092

This last comment suggests a potential problem with the perceptron. Suppose a test ex-1093

ample is very close to a training example, but not identical. If the classifier only gets the1094

correct answer on the training example by a small margin, then it may get the test instance1095

wrong. To formalize this intuition, define the margin as,1096

�(✓;x(i), y(i)) = ✓ · f(x(i), y(i)) � max
y 6=y(i)

✓ · f(x(i), y). [2.43]

The margin represents the difference between the score for the correct label y(i), and
the score for the highest-scoring label. The intuition behind large margin classification is
that it is not enough just to label the training data correctly — the correct label should be
separated from other labels by a comfortable margin. This idea can be encoded into a loss
function,

`MARGIN(✓;x(i), y(i)) =

(
0, �(✓;x(i), y(i)) � 1,

1 � �(✓;x(i), y(i)), otherwise
[2.44]

=
⇣
1 � �(✓;x(i), y(i))

⌘

+
, [2.45]

where (x)+ = max(0, x). The loss is zero if there is a margin of at least 1 between the1097

score for the true label and the best-scoring alternative ŷ. This is almost identical to the1098

perceptron loss, but the hinge point is shifted to the right, as shown in Figure 2.2. The1099

margin loss is a convex upper bound on the zero-one loss.1100

Jacob Eisenstein. Draft of June 20, 2018.



Perceptron vs. NB

• Both are convex, but only NB solvable in 
closed form

•  can suffer infinite loss on a single 
example (Why?)

•  treats all correct answers 
equally (compare large margin methods)

ℓNB

ℓPERCEPTRON
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From Classifier to Probability

Ψ(x, y) = θ ⋅ f(x, y)Scoring function

u(x, y) = exp(θ ⋅ f(x, y))Nonnegative

p(x, y; θ) =
exp(θ ⋅ f(x, y))

∑x′￼∈𝒳,y′￼∈𝒴 exp(θ ⋅ f(x′￼, y′￼))Joint probability

p(y |x; θ) =
exp(θ ⋅ f(x, y))

∑y′￼∈𝒴 exp(θ ⋅ f(x, y′￼))
Conditional prob.
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Logistic Regression

p(y |x; θ) =
exp(θ ⋅ f(x, y))

∑y′￼∈𝒴 exp(θ ⋅ f(x, y′￼))

ℓLogReg(θ; x(i), y(i)) = − θ ⋅ f(x(i), y(i)) + log ∑
y′￼∈𝒴

exp(θ ⋅ f(x(i), y′￼))

ℓPerceptron(θ; x(i), y(i)) = − θ ⋅ f(x(i), y(i)) + max
y′￼∈𝒴

θ ⋅ f(x(i), y′￼)
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Priors/Regularization

ℓLogReg(θ; x(i), y(i)) = − θ ⋅ f(x(i), y(i)) + log ∑
y′￼∈𝒴

exp(θ ⋅ f(x(i), y′￼))
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2.4.2 Gradients1163

Logistic loss is minimized by optimization along the gradient. Here is the gradient with
respect to the logistic loss on a single example,
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The final step employs the definition of a conditional expectation (§ A.5). The gradient of1164

the logistic loss is equal to the difference between the expected counts under the current1165

model, EY |X [f(x(i), y)], and the observed feature counts f(x(i), y(i)). When these two1166

vectors are equal for a single instance, there is nothing more to learn from it; when they1167

are equal in sum over the entire dataset, there is nothing more to learn from the dataset as1168

a whole. The gradient of the hinge loss is nearly identical, but it involves the features of1169

the predicted label under the current model, f(x(i), ŷ), rather than the expected features1170

EY |X [f(x(i), y)] under the conditional distribution p(y | x;✓).1171

The regularizer contributes �✓ to the overall gradient:
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2.5 Optimization1172

Each of the classification algorithms in this chapter can be viewed as an optimization1173

problem:1174

• In Naı̈ve Bayes, the objective is the joint likelihood log p(x(1:N),y(1:N)). Maximum1175

likelihood estimation yields a closed-form solution for ✓.1176

Jacob Eisenstein. Draft of June 20, 2018.
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Gradient-Based Optimization

θ(t+1) ← θ(t) − η(t) ∇θL

θ(t+1) ← θ(t) − η(t)E[∇θL]

Gradient descent

Stochastic gradient descent

Batch

Online

for learning rate 
See also conjugate gradient, quasi-Newton methods

η



Single-example Update

θ(t+1) ← θ(t) − η(t)[−f(x(i), y(i))+

max
̂y

f(x(i), ̂y)]

EY∣X f(x(i), y)]

perceptron

logistic regression



Gradient-Based Optimization
2.5. OPTIMIZATION 55

Algorithm 5 Generalized gradient descent. The function BATCHER partitions the train-
ing set into B batches such that each instance appears in exactly one batch. In gradient
descent, B = 1; in stochastic gradient descent, B = N ; in minibatch stochastic gradient
descent, 1 < B < N .

1: procedure GRADIENT-DESCENT(x(1:N),y(1:N), L, ⌘(1...1), BATCHER, Tmax)
2: ✓  0
3: t 0
4: repeat
5: (b(1), b(2), . . . , b(B)) BATCHER(N)
6: for n 2 {1, 2, . . . , B} do
7: t t + 1

8: ✓(t)
 ✓(t�1)

� ⌘(t)r✓L(✓(t�1);x(b
(n)
1 ,b

(n)
2 ,...),y(b

(n)
1 ,b

(n)
2 ,...))

9: if Converged(✓(1,2,...,t)) then
10: return ✓(t)

11: until t � Tmax
12: return ✓(t)

Algorithm 5 offers a generalized view of gradient descent. In standard gradient de-1225

scent, the batcher returns a single batch with all the instances. In stochastic gradient de-1226

scent, it returns N batches with one instance each. In mini-batch settings, the batcher1227

returns B minibatches, 1 < B < N .1228

There are many other techniques for online learning, and the field is currently quite
active (Bottou et al., 2016). Some algorithms use an adaptive step size, which can be dif-
ferent for every feature (Duchi et al., 2011). Features that occur frequently are likely to be
updated frequently, so it is best to use a small step size; rare features will be updated in-
frequently, so it is better to take larger steps. The AdaGrad (adaptive gradient) algorithm
achieves this behavior by storing the sum of the squares of the gradients for each feature,
and rescaling the learning rate by its inverse:

gt =r✓L(✓(t);x(i), y(i)) [2.74]

✓(t+1)
j

 ✓(t)
j
�

⌘(t)qP
t

t0=1 g2
t,j

gt,j , [2.75]

where j iterates over features in f(x, y).1229

In most cases, the number of active features for any instance is much smaller than the1230

number of weights. If so, the computation cost of online optimization will be dominated1231

by the update from the regularization term, �✓. The solution is to be “lazy”, updating1232

each ✓j only as it is used. To implement lazy updating, store an additional parameter ⌧j ,1233

which is the iteration at which ✓j was last updated. If ✓j is needed at time t, the t � ⌧1234
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Reparameterizing LogReg
p(y |x; θ) =

exp(θ ⋅ f(x, y))
∑y′￼∈𝒴 exp(θ ⋅ f(x, y′￼))

p(𝚙𝚘𝚜 |x; θ) =
exp(θ ⋅ f(x, 𝚙𝚘𝚜))

exp(θ ⋅ f(x, 𝚙𝚘𝚜)) + exp(θ ⋅ f(x, 𝚗𝚎𝚐))

p(𝚙𝚘𝚜 |x; θ) =
1

1 + exp(θ ⋅ f(x, 𝚗𝚎𝚐))
exp(θ ⋅ f(x, 𝚙𝚘𝚜))

p(𝚙𝚘𝚜 |x; θ) =
1

1 + exp(−θ ⋅ [ f(x, 𝚙𝚘𝚜) − f(x, 𝚗𝚎𝚐)])



Logistic Sigmoid

σ(x) =
1

1 + e−θx+b



Logistic Sigmoid
Squashing function:

[-∞,∞]→[0,1]

σ(x) =
1

1 + e−θx+b



Logistic Sigmoid
Squashing function:

[-∞,∞]→[0,1]

Bias b = 0 here

σ(x) =
1

1 + e−θx+b



Logistic Sigmoid
Squashing function:

[-∞,∞]→[0,1]

Bias b = 0 here

Offset, scaled tanh

σ(x) =
1

1 + e−θx+b



Logistic Sigmoid
Squashing function:

[-∞,∞]→[0,1]

Bias b = 0 here

 is a slope 
parameter
θ

Offset, scaled tanh

σ(x) =
1

1 + e−θx+b



What Should My Inputs 
Look Like?

31

It was the 
best of times, 

it was the 
worst of 
times...
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<OFFSET>

aardvark

zyxt

Figure 2.1: The bag-of-words and feature vector representations, for a hypothetical text
classification task.

the space of labels Y is very large, and we want to model shared substructures between786

labels.787

It is common to add an offset feature at the end of the vector of word counts x, which788

is always 1. We then have to also add an extra zero to each of the zero vectors, to make the789

vector lengths match. This gives the entire feature vector f(x, y) a length of (V + 1) ⇥ K.790

The weight associated with this offset feature can be thought of as a bias for or against791

each label. For example, if we expect most documents to be spam, then the weight for792

the offset feature for y = SPAM should be larger than the weight for the offset feature for793

y = HAM.794

Returning to the weights ✓, where do they come from? One possibility is to set them
by hand. If we wanted to distinguish, say, English from Spanish, we can use English
and Spanish dictionaries, and set the weight to one for each word that appears in the
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One-Hot Encoding



Summary of Linear Classifiers
• Naive Bayes

• Pro: single-pass, closed-form estimation; probabilistic predictions

• Con: poor accuracy w/correlated features

• Perceptron

• Pro: online, error-driven learning; typically high accuracy w/
averaging

• Con: not probabilistic; stopping not well motivated

• Logistic regression

• Pro: error-driven + probabilistic; regularization well-motivated

• Con: logistic loss saturates/overtrains on correct labels


