
Words, Regular Expressions, and
N-gram (Markov) Models

CS6120: Natural Language Processing
Northeastern University

Si Wu

(borrowed some slides created by David Smith, and slides
from Jurafsky & Martin Chapter 2)

Logistics

• Class website https://siwu.io/nlp-class/
• Make sure you join

• Gradescope, for coding assignment, code to join
NGZDZP

• Ed Discussion, for asking questions, link on class
website

• We are not using Canvas
• Office hours are posted on the class website

• Any preference on in-person vs. remote?
• Attend lectures, there will be in-class quizzes

https://siwu.io/nlp-class/
https://siwu.io/nlp-class/
https://siwu.io/nlp-class/

Review

• Last time we briefly talked about
• Why human language is difficult to study
• The social nature of human languages
• The statistical nature of language models

• We also briefly mentioned entropy, naïve bayes,
neural network, and LLMs.

• In the next 3 lectures, we will talk about strings, n-
grams, and some classic and “simpler” statistical
language models

Regular expression
Talking about strings

Chomsky Hierarchy in Theory of
Computation

Turing-
recognizable
languages

Turing-decidable
languages

Context-free grammar
(accepted by
pushdown automata)

Regular
languages
(accepted by
finite automata)

Regular expressions are used everywhere

• A formal language for specifying text strings
• Part of every text processing task

• Often a useful pre-processing or text formatting
step, for example for BPE tokenization

• Also necessary for data analysis of text
• A widely used tool in industry and academics

Theory of Computation Refresh

• Any regular expression can be expressed in a
finite-state automaton (deterministic or non-
deterministic), and vice versa

• Def: Finite state automaton/machine:
• Input: finite string over a fixed set of acceptable

symbols
• Output: accept or reject
• Memory is limited by the num of states it has

• Regular language: the set of accepted strings
defined by the regular expression.

Theory of Computation refresh

• Kleene star: (ba)* → “”, “ba”, “baba”, etc.
• Kleene plus: at least once. (ba)+ → “ba”, “baba”,

etc.
• Regular language is closed under

• Negation/complement
• Addition/concatenation
• Union
• Intersection
• Reversal
• Etc.

A funny but intuitive example of finite
state automation
(made with JFLAP, circa 2018)

Accepted strings: “engineering”, “boba”, “sleep”

A language model is a function that assigns
a probability to a string of text.

S = { The quick brown fox jumped over the lazy dog }

𝑃(𝑠) = 1 if 𝑠 ∈ 𝑆
𝑃(𝑠) = 0 otherwise

S = {
The quick brown fox…,
When in the course of human events…,
It was a bright cold day in April and the clocks…

}

𝑃(𝑠) =
1

|𝑆|
if 𝑠 ∈ 𝑆

𝑃(𝑠) = 0 otherwise

This works for finite sets

Strings as Queries

searching for:
the Traders’ Bank of the city of Richmond

You’re looking at old financial notices:

Strings as Queries

the Trader. Bank of the city of Richmoud, to be

tbe Traders' Bank or the city of Biebmond, to bo

tbe Traders' Bank of the city of Klchmoud, to be,

the Traders' Hank of the city of Richmoud, lo be j

the Trader*' Bsnk of the city of Richmond, to be

the Traders' Hank of the city of Richmond, to he

tha Traders' Bank of the cltv of Richmond to be

But these lines get transcribed as:

Exact match won’t work!

Generalized Queries

Instead of searching for:
 the Traders’ Bank of the city of Richmond

the Trader. Bank of the city of Richmoud, to be

tbe Traders' Bank or the city of Biebmond, to bo

tbe Traders' Bank of the city of Klchmoud, to be,

the Traders' Hank of the city of Richmoud, lo be j

the Trader*' Bsnk of the city of Richmond, to be

the Traders' Hank of the city of Richmond, to he

tha Traders' Bank of the cltv of Richmond to be

Notice confusion of c/e/o, b/h, B/H/K/R:

Search this:
t[bh][ceo] Trad[ceo]rs’ [BHKR]ank o[fr] th[ceo] [ceo]ity

[ceo][fr] [BHKR]i[ceo][bh]m[ceo]nd

Generalized Queries

the Trader. Bank of the city of Richmoud, to be

tbe Traders' Bank or the city of Biebmond, to bo

tbe Traders' Bank of the city of Klchmoud, to be,

the Traders' Hank of the city of Richmoud, lo be j

the Trader*' Bsnk of the city of Richmond, to be

the Traders' Hank of the city of Richmond, to he

tha Traders' Bank of the cltv of Richmond to be

t[bh][ceo] Trad[ceo]rs’ [BHKR]ank o[fr]

th[ceo] [ceo]ity [ceo][fr]

[BHKR]i[ceo][bh]m[ceo]nd

We will match two of them:

Using this expression,

Regular Languages

S = {
haha,
hahaha,
hahahaha,
hahahahaha,
…

}

ha(ha)+Kleene plus

haha(ha)*
syntactic sugar for
Kleene star

h a h a

Regular Languages

But this regular language
t[bh][ceo] Trad[ceo]rs’ [BHKR]ank o[fr]

th[ceo] [ceo]ity [ceo][fr]

[BHKR]i[ceo][bh]m[ceo]nd

There are
2*3*3*4*2*3*3*3*2*4*3*2*3=559,872

Possible variations

Surely some strings are more likely!

Zipf’s Law

• Distribution of word frequencies is very skewed

• a few words occur very often, many words hardly ever occur

• e.g., two most common words (“the”, “of”) make up about
10% of all word occurrences in text documents

Zipf’s law (more generally, a “power law”):

• Given that words are ranked in order of decreasing frequency

• Observe that rank (r) of a word times its frequency (f) is
approximately a constant (k)

• i.e., 𝒓 ⋅ 𝒇 ≈ 𝒌 or 𝒓 ⋅ 𝑷𝒓 ≈ 𝒄, where 𝑷𝒓 is relative frequency
of word occurrence and 𝒄 ≈ 𝟎. 𝟏 for English

constant

From Wikipedia, Zipf's law plot for the first 10 million words in

30 Wikipedias (as of October 2015) in a log-log scale

https://en.wikipedia.org/wiki/Log-log
https://en.wikipedia.org/wiki/Log-log
https://en.wikipedia.org/wiki/Log-log

AP89 (Associated Press 1989)
Example

Zipf’s Law for AP89

log–log plot: note deviations at high and low frequencies

Probability

Axioms of Probability

• Define event space

• Probability function, s.t.

• Sum of disjoint events A, B

• All events sum to one

• Show that:

Conditional Probability

Chain rule

A

B

Independence

In coding terms, knowing B doesn’t
help in decoding A, and vice versa.

A: tomorrow is sunny , P(A) = 0.5
B: the US president will post on Twitter, P(B) = 0.5
P(A|B) = P(A) because the events A and B are independent

Markov Models

First-order Markov independence assumption

𝑝(𝑤1, 𝑤2, … , 𝑤𝑛) = 𝑝(𝑤1)𝑝(𝑤2|𝑤1)𝑝(𝑤3|𝑤1, 𝑤2)

⋅ 𝑝(𝑤4|𝑤1, 𝑤2, 𝑤3) ⋯ 𝑝(𝑤𝑛|𝑤1, … , 𝑤𝑛−1)

𝑝(𝑤𝑖|𝑤1, … , 𝑤𝑖−1) ≈ 𝑝(𝑤𝑖 ∣ 𝑤𝑖−1)

𝑝(𝑤1, 𝑤2, … , 𝑤𝑛) ≈ 𝑝(𝑤1)𝑝(𝑤2|𝑤1)𝑝(𝑤3|𝑤2)

⋅ 𝑝(𝑤4 ∣ 𝑤3) ⋯ 𝑝(𝑤𝑛 ∣ 𝑤𝑛−1)

Bigram!

First-order Markov assumption → bigram model , only
depends on the word before

Second-order Markov assumption → trigram model ,
two words before

• “The train is late again”

• P(again | the, train, is, late) =
• In bi-gram, or first-order Markov assumption

p(again | the, train, is, late) = p(again | late)

• In tri-gram, or second-order Markov assumption

p(again | the, train, is, late) = p(again | is, late)

Another View

w1 w2 w3 w4

The results have shown
p(w2|The) p(w3|results) p(w4|have) p(w5|shown)

The results have shown
p(w2|The) p(w3|The,results) p(w4|results,have) p(w5|have,shown)

Directed graphical models: lack of edge means conditional
independence

Bigram model as (dynamic) Bayes net

Trigram model as (dynamic) Bayes net

Yet Another View

The

results

have

shown

Bigram model as finite state machine

What about a trigram model?

Bayesian classifier
And examples of sentiment analysis

Movie Reviews
Dune Part 1 transcends the boundaries of modern cinema, delivering
an awe-inspiring journey into the heart of a mesmerizing universe.
Director Denis Villeneuve's visionary adaptation of Frank Herbert's
iconic novel captivates from the opening scene to the breathtaking
finale. With stunning visuals, meticulous attention to detail, and a
cast that brings each character to life with unparalleled depth…

Personally, I've never read the book by Frank Herbert, yet a movie based on
it's original source material has to work on it's own. I am not one of those
people who adore "Dune," It is such a tedious dud that left me bored to
death. It was so boring, that it would make it's original novel a weary
bedtime story. Don't get me wrong, It's not really a bad movie by any means
(it does have some adequate moments, there are some redeemable
qualities, and there is even some inventive creativity), but…

Yet another watered version of the already watered down late Star Wars
saga, now even more shamefully targeted to the teen public, coated with
great scenes, great performances and top celebs. The protagonist depicts
once again the typical frail and introspective teenager whose deeper
egoistic dream is to be the center of the universe, full of power, glory and in
a reality where adults are basically stupid, nuisances or stereotypical
buffoons. For me this type of story just keeps cashing in over…

+

_

_

Setting up a Classifier
What we want:

p(+ | w1, w2, ..., wn) > p(- | w1, w2, ..., wn) ?

What we know how to build:

• A language model for each class

• p(w1, w2, ..., wn | +)

• p(w1, w2, ..., wn | -)
Likelihood

Bayes’ Theorem

By the definition of conditional probability:

we can show:

A “Bayesian” Classifier

Prior
LikelihoodPosterior

Nowadays also
means modeling
uncertainty
about p

P (comedy | “this is a great movie”) =
P(comedy) P(“this is a great movie” | comedy)

• Posterior: during prediction, “given this text, what’s
the probability it belongs to this class”.

• Prior: the probability of this genre, how common is
this genre

• Likelihood: What language models learn. It learns
what the text that belongs to this class looks like.
This is the “fit score” of a data/review to a class.

Naive Bayes Intuition

• Simple ("naive") classification method based on Bayes rule

• Relies on very simple representation of document

• Bag of words

• Different types of naïve Bayes:

• Counting word occurrence, e.g. “so so great”, so 2, great 1→
multinomial naïve bayes. In this class, we say counting tokens

• Not counting word occurrence, e.g. “so so great”, so 1, great 1 →
Bernoulli naïve bayes. In this class, we say counting word types

The bag of words representation

γ()=c

seen 2

sweet 1

whimsical 1

recommend 1

happy 1

... ...

Figure from Jurafsky and Martin

Naive Bayes Classifier

w1 w2 w3 w4

R

No dependencies among words!

One variable per token in document

𝑝(𝑤1, 𝑤2, … , 𝑤|𝐷| ∣ 𝑅) ≈ ∏
𝑖=1

|𝐷|

𝑝(𝑤𝑖 ∣ 𝑅)

Naïve Bayes on Movie Reviews

>>> classifier.show_most_informative_features(5)

classifier.show_most_informative_features(5)
Most Informative Features

contains(outstanding) = True pos : neg = 14.1 : 1.0
contains(mulan) = True pos : neg = 8.3 : 1.0

contains(seagal) = True neg : pos = 7.8 : 1.0
contains(wonderfully) = True pos : neg = 6.6 : 1.0

contains(damon) = True pos : neg = 6.1 : 1.0

• Train models for positive, negative

• For each review, find higher posterior

• Which word probability ratios are highest?

What’s Wrong With naïve Bayes?

• What happens when word dependencies are strong?

• What happens when some words occur only once?

• What happens when the classifier sees a new word?

We will talk more about naïve Bayes in the next lecture

ML for Naive Bayes
• Recall: p(+ | Damon movie)

 = p(Damon | +) p(movie | +) p(+)

• If corpus of positive reviews has 1000 words, and
“Damon” occurs 50 times,

 pML(Damon | +) = ?

• If pos. corpus has “Affleck” 0 times,

 p(+ | Affleck Damon movie) = ?

Out of Vocabulary (OOV)!

Estimation for Markov (n-gram) models

Maximum Likelihood Estimates

The maximum likelihood estimate
• of some parameter of a model M from a training set T

• maximizes the likelihood of the training set T given the model M

Suppose the word “bagel” occurs 400 times in a corpus of a million words

• What is the probability that a random word from some other text will be
“bagel”?

• MLE estimate is 400/1,000,000 = .0004

This may be a bad estimate for some other corpus
• But it is the estimate that makes it most likely that “bagel” will occur 400

times in a million word corpus.

Unigram example

Estimating bigram probabilities

The Maximum Likelihood Estimate

Where

Total occurrences of 𝑤𝑖−1 as a first word in any bigram

Intuition for bigram MLE

• The probability of a word following another word is just
the relative frequency of that bigram.

• If "the cat" appears 50 times, and "the" appears 200
times in total, then:

• P(cat | the) = 50/200 = 0.25

The intuition of smoothing

When we have sparse statistics:

Count(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request

 7 total

Count(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other

 7 total

a
l
le
g
a
t
i
o
n
s

r
e
p
o
r
t
s

c
la
i
m
s

a
tt

a
c
k

r
e
q
u
e
s
t

m
a

n

o
u

tc
o

m
e

…

a
tt

a
c
k

m
a

n

o
u

tc
o

m
e

…
a
l
le
g
a
t
i
o
n
s

r
e
p
o
r
t
s

c
l
a
i
m
s

r
e
q
u
e
s
t

Steal probability mass to generalize better

(Example modified from Dan Klein!)

Add-one estimation

• Also called Laplace smoothing

• Pretend we saw each word one more time than we did

• Just add one to all the counts!

MLE estimate:

Add-1 estimate:

V be the vocabulary size

Compare with raw bigram counts

original

add-1
smoothed

Generalized Additive Smoothing

• Laplace add-one smoothing generally assigns too
much probability to unseen words

• More common to use λ instead of 1:
(Laplace is just a special case of where λ = 1)

interpolation

What’s
the right
λ?

Bias-variance tradeoff

• Bias: how far your model/estimator’s average prediction is from the
true value

• High → model is too simple and not learning the pattern of the
data → underfitting

• Low → the model can capture the data well

• Variance: how much your model/estimator’s prediction will fluctuate
for different training sets

• High → model is too sensitive to training data → overfitting

• Low → predictions are stable; model can generalize well on
different datasets

• You usually can’t minimize both bias and variance at the same time

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟

A little ML review,
helpful for
understanding MLE vs
Smoothing

Bias-variance tradeoff

• Maximum likelihood is asymptotically unbiased: with a
lot of data, the estimator learns the true value
accurately

• Smoothing reduces variance and introduces some
bias (bias-variance tradeoff!)

• High-variance classifiers may overfit the training data,
performing poorly out of sample or unseen data

• Too much smoothing can lead to underfitting: as 𝜆 →
∞ or 𝜇 → 0 we approach a uniform distribution, i.e.,
not learning the patterns from the training data

Bias-Variance Tradeoff

Backoff and Interpolation
Sometimes it helps to use a simpler model

• Condition on less context for contexts you know less about

Backoff:
• If enough evidence, use trigram P(wn|wn−2wn−1)
• If not, use bigram P(wn|wn−1)
• Else unigram P(wn)

Interpolation:
• mix unigram, bigram, trigram

Interpolation works better

Linear Interpolation

Simple interpolation

Lambdas conditional on context:

How to set λs for interpolation?
1. Use a held-out corpus aka development data

Choose λs to maximize probability of held-out data:
• Fix the N-gram probabilities (on the training data)

• Then search for λs that give largest probability to held-out set

2. K-fold cross-validation (jackknife)

3. Leave-one-out cross-validation

Training Data
Held-Out

Data
Test
Data

Summary: What to do if you never saw
an n-gram in training
Smoothing: Pretend you saw every n-gram one (or k) times
more than you did
• A blunt instrument (replacing a lot of zeros) but

sometimes useful
Backoff: If you haven't seen the trigram, use the (weighted)
bigram probability instead
• Weighting is messy; "stupid" backoff works fine at

web-scale
Interpolation: (weighted) mix of trigram, bigram, unigram
• Usually the best! We also use interpolation to

combine multiple LLMs

Logistics

• Assignment 1 is released

• Link to the recommended textbook is also online

• Office hours are online now. Attend if you need any
help

• If you haven’t join Gradescope, make sure you do
so. You will need this for submitting your coding
assignment.

• Join Ed Discussion if you want to ask questions
online.

	Slide 1: Words, Regular Expressions, and N-gram (Markov) Models
	Slide 2: Logistics
	Slide 3: Review
	Slide 4: Regular expression
	Slide 5: Chomsky Hierarchy in Theory of Computation
	Slide 6: Regular expressions are used everywhere
	Slide 7: Theory of Computation Refresh
	Slide 8: Theory of Computation refresh
	Slide 9: A funny but intuitive example of finite state automation (made with JFLAP, circa 2018)
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Strings as Queries
	Slide 14: Strings as Queries
	Slide 15: Generalized Queries
	Slide 16: Generalized Queries
	Slide 17: Regular Languages
	Slide 18: Regular Languages
	Slide 19: Zipf’s Law
	Slide 20
	Slide 21: AP89 (Associated Press 1989) Example
	Slide 22: Zipf’s Law for AP89
	Slide 23: Probability
	Slide 24: Axioms of Probability
	Slide 25: Conditional Probability
	Slide 26: Independence
	Slide 27: Markov Models
	Slide 28
	Slide 29
	Slide 30: Another View
	Slide 31: Yet Another View
	Slide 32: Bayesian classifier
	Slide 33: Movie Reviews
	Slide 34: Setting up a Classifier
	Slide 35: Bayes’ Theorem
	Slide 36: A “Bayesian” Classifier
	Slide 37
	Slide 38: Naive Bayes Intuition
	Slide 39: The bag of words representation
	Slide 40
	Slide 41: Naive Bayes Classifier
	Slide 42: Naïve Bayes on Movie Reviews
	Slide 43: What’s Wrong With naïve Bayes?
	Slide 44: ML for Naive Bayes
	Slide 45: Estimation for Markov (n-gram) models
	Slide 46: Maximum Likelihood Estimates
	Slide 47: Estimating bigram probabilities
	Slide 48: Intuition for bigram MLE
	Slide 49: The intuition of smoothing
	Slide 50: Add-one estimation
	Slide 51: Compare with raw bigram counts
	Slide 52: Generalized Additive Smoothing
	Slide 53
	Slide 54: Bias-variance tradeoff
	Slide 55: Bias-variance tradeoff
	Slide 56: Bias-Variance Tradeoff
	Slide 57: Backoff and Interpolation
	Slide 58: Linear Interpolation
	Slide 59: How to set λs for interpolation?
	Slide 60: Summary: What to do if you never saw an n-gram in training
	Slide 61: Logistics

