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Logistics 

• Class website https://siwu.io/nlp-class/ 
• Make sure you join 

• Gradescope, for coding assignment, code to join 
NGZDZP

• Ed Discussion, for asking questions, link on class 
website 

• We are not using Canvas
• Office hours are posted on the class website

• Any preference on in-person vs. remote?
• Attend lectures, there will be in-class quizzes

https://siwu.io/nlp-class/
https://siwu.io/nlp-class/
https://siwu.io/nlp-class/


Review

• Last time we briefly talked about
• Why human language is difficult to study
• The social nature of human languages
• The statistical nature of language models

• We also briefly mentioned entropy, naïve bayes, 
neural network, and LLMs.

• In the next 3 lectures, we will talk about strings, n-
grams, and some classic and “simpler” statistical 
language models



Regular expression 
Talking about strings



Chomsky Hierarchy in Theory of 
Computation

Turing-
recognizable 
languages

Turing-decidable 
languages

Context-free grammar 
(accepted by 
pushdown automata)

Regular 
languages
(accepted by 
finite automata)



Regular expressions are used everywhere

• A formal language for specifying text strings
• Part of every text processing task

• Often a useful pre-processing or text formatting 
step, for example for BPE tokenization

• Also necessary for data analysis of text
• A widely used tool in industry and academics



Theory of Computation Refresh

• Any regular expression can be expressed in a 
finite-state automaton (deterministic or non-
deterministic), and vice versa

• Def: Finite state automaton/machine: 
• Input: finite string over a fixed set of acceptable 

symbols
• Output: accept or reject
• Memory is limited by the num of states it has

• Regular language: the set of accepted strings 
defined by the regular expression.



Theory of Computation refresh

• Kleene star: (ba)* →  “”, “ba”, “baba”, etc.
• Kleene plus:  at least once. (ba)+ → “ba”, “baba”, 

etc.
• Regular language is closed under

• Negation/complement
• Addition/concatenation
• Union 
• Intersection
• Reversal 
• Etc.



A funny but intuitive example of finite 
state automation
(made with JFLAP, circa 2018)

Accepted strings: “engineering”, “boba”, “sleep”



A language model is a function that assigns 
a probability to a string of text.



S = { The quick brown fox jumped over the lazy dog  }

𝑃(𝑠) = 1 if 𝑠 ∈ 𝑆
𝑃(𝑠) = 0 otherwise



S = {
The quick brown fox…,
When in the course of human events…,
It was a bright cold day in April and the clocks…

}

𝑃(𝑠) =
1

|𝑆|
if 𝑠 ∈ 𝑆

𝑃(𝑠) = 0 otherwise

This works for finite sets



Strings as Queries

searching for:
the Traders’ Bank of the city of Richmond

You’re looking at old financial notices:



Strings as Queries

the Trader. Bank of the city of Richmoud, to be

tbe Traders' Bank or the city of Biebmond, to bo

tbe Traders' Bank of the city of Klchmoud, to be,

the Traders' Hank of the city of Richmoud, lo be j

the Trader*' Bsnk of the city of Richmond, to be

the Traders' Hank of the city of Richmond, to he

tha Traders' Bank of the cltv of Richmond to be

But these lines get transcribed as:

Exact match won’t work!



Generalized Queries

Instead of searching for:
    the Traders’ Bank of the city of Richmond

the Trader. Bank of the city of Richmoud, to be

tbe Traders' Bank or the city of Biebmond, to bo

tbe Traders' Bank of the city of Klchmoud, to be,

the Traders' Hank of the city of Richmoud, lo be j

the Trader*' Bsnk of the city of Richmond, to be

the Traders' Hank of the city of Richmond, to he

tha Traders' Bank of the cltv of Richmond to be

Notice confusion of c/e/o, b/h, B/H/K/R:

Search this:
t[bh][ceo] Trad[ceo]rs’ [BHKR]ank o[fr] th[ceo] [ceo]ity

[ceo][fr] [BHKR]i[ceo][bh]m[ceo]nd



Generalized Queries

the Trader. Bank of the city of Richmoud, to be

tbe Traders' Bank or the city of Biebmond, to bo

tbe Traders' Bank of the city of Klchmoud, to be,

the Traders' Hank of the city of Richmoud, lo be j

the Trader*' Bsnk of the city of Richmond, to be

the Traders' Hank of the city of Richmond, to he

tha Traders' Bank of the cltv of Richmond to be

t[bh][ceo] Trad[ceo]rs’ [BHKR]ank o[fr] 

th[ceo] [ceo]ity [ceo][fr] 

[BHKR]i[ceo][bh]m[ceo]nd

We will match two of them: 

Using this expression,



Regular Languages

S = {
haha,
hahaha,
hahahaha,
hahahahaha,
…

}

ha(ha)+Kleene plus 

haha(ha)*
syntactic sugar for 
Kleene star

h a h a



Regular Languages

But this regular language
t[bh][ceo] Trad[ceo]rs’ [BHKR]ank o[fr] 

th[ceo] [ceo]ity [ceo][fr] 

[BHKR]i[ceo][bh]m[ceo]nd

There are 
2*3*3*4*2*3*3*3*2*4*3*2*3=559,872

Possible variations

Surely some strings are more likely!



Zipf’s Law

• Distribution of word frequencies is very skewed

• a few words occur very often, many words hardly ever occur

• e.g., two most common words (“the”, “of”) make up about 
10% of all word occurrences in text documents

Zipf’s law (more generally, a “power law”):

• Given that words are ranked in order of decreasing frequency

• Observe that rank (r) of a word times its frequency (f) is 
approximately a constant (k)

• i.e., 𝒓 ⋅ 𝒇 ≈ 𝒌 or 𝒓 ⋅ 𝑷𝒓 ≈ 𝒄, where 𝑷𝒓 is relative frequency 
of word occurrence and 𝒄 ≈ 𝟎. 𝟏 for English

constant



From Wikipedia, Zipf's law plot for the first 10 million words in 

30 Wikipedias (as of October 2015) in a log-log scale

https://en.wikipedia.org/wiki/Log-log
https://en.wikipedia.org/wiki/Log-log
https://en.wikipedia.org/wiki/Log-log


AP89 (Associated Press 1989) 
Example



Zipf’s Law for AP89

log–log plot: note deviations at high and low frequencies



Probability 



Axioms of Probability

• Define event space

• Probability function, s.t.

• Sum of disjoint events A, B

• All events sum to one

• Show that:



Conditional Probability

Chain rule

A

B



Independence

In coding terms, knowing B doesn’t 
help in decoding A, and vice versa.

A: tomorrow is sunny , P(A) = 0.5
B: the US president will post on Twitter, P(B) = 0.5 
P(A|B) = P(A) because the events A and B are independent 



Markov Models

First-order Markov independence assumption

𝑝(𝑤1, 𝑤2, … , 𝑤𝑛) = 𝑝(𝑤1)𝑝(𝑤2|𝑤1)𝑝(𝑤3|𝑤1, 𝑤2)

⋅ 𝑝(𝑤4|𝑤1, 𝑤2, 𝑤3) ⋯ 𝑝(𝑤𝑛|𝑤1, … , 𝑤𝑛−1)

𝑝(𝑤𝑖|𝑤1, … , 𝑤𝑖−1) ≈ 𝑝(𝑤𝑖 ∣ 𝑤𝑖−1)

𝑝(𝑤1, 𝑤2, … , 𝑤𝑛) ≈ 𝑝(𝑤1)𝑝(𝑤2|𝑤1)𝑝(𝑤3|𝑤2)

⋅ 𝑝(𝑤4 ∣ 𝑤3) ⋯ 𝑝(𝑤𝑛 ∣ 𝑤𝑛−1)

Bigram!



First-order Markov assumption → bigram model , only 
depends on the word before

Second-order Markov assumption → trigram model , 
two words before



• “The train is late again”

• P(again | the, train, is, late) = 
• In bi-gram, or first-order Markov assumption

p(again | the, train, is, late) = p(again | late)

• In tri-gram, or second-order Markov assumption

p(again | the, train, is, late) = p(again | is, late)



Another View

w1 w2 w3 w4

The results have shown
p(w2|The) p(w3|results) p(w4|have) p(w5|shown)

The results have shown
p(w2|The) p(w3|The,results) p(w4|results,have) p(w5|have,shown)

Directed graphical models: lack of edge means conditional 
independence

Bigram model as (dynamic) Bayes net

Trigram model as (dynamic) Bayes net



Yet Another View

The

results

have

shown

Bigram model as finite state machine

What about a trigram model?



Bayesian classifier
And examples of sentiment analysis



Movie Reviews
Dune Part 1 transcends the boundaries of modern cinema, delivering 
an awe-inspiring journey into the heart of a mesmerizing universe. 
Director Denis Villeneuve's visionary adaptation of Frank Herbert's 
iconic novel captivates from the opening scene to the breathtaking 
finale. With stunning visuals, meticulous attention to detail, and a 
cast that brings each character to life with unparalleled depth…

Personally, I've never read the book by Frank Herbert, yet a movie based on 
it's original source material has to work on it's own. I am not one of those 
people who adore "Dune," It is such a tedious dud that left me bored to 
death. It was so boring, that it would make it's original novel a weary 
bedtime story. Don't get me wrong, It's not really a bad movie by any means 
(it does have some adequate moments, there are some redeemable 
qualities, and there is even some inventive creativity), but…

Yet another watered version of the already watered down late Star Wars 
saga, now even more shamefully targeted to the teen public, coated with 
great scenes, great performances and top celebs. The protagonist depicts 
once again the typical frail and introspective teenager whose deeper 
egoistic dream is to be the center of the universe, full of power, glory and in 
a reality where adults are basically stupid, nuisances or stereotypical 
buffoons. For me this type of story just keeps cashing in over…

+

_

_



Setting up a Classifier
What we want:

p(+ | w1, w2, ..., wn) > p( - | w1, w2, ..., wn) ?

What we know how to build:

• A language model for each class

• p(w1, w2, ..., wn | +)

• p(w1, w2, ..., wn | - )
Likelihood 



Bayes’ Theorem

By the definition of conditional probability:

we can show:



A “Bayesian” Classifier

Prior
LikelihoodPosterior

Nowadays also 
means modeling 
uncertainty 
about p



P (comedy | “this is a great movie”) = 
P(comedy) P(“this is a great movie” | comedy)

• Posterior: during prediction, “given this text, what’s 
the probability it belongs to this class”. 

• Prior: the probability of this genre, how common is 
this genre   

• Likelihood: What language models learn. It learns 
what the text that belongs to this class looks like. 
This is the “fit score” of a data/review to a class.



Naive Bayes Intuition

• Simple ("naive") classification method based on Bayes rule

• Relies on very simple representation of document

• Bag of words

• Different types of naïve Bayes:

• Counting word occurrence, e.g. “so so great”, so 2, great 1→ 
multinomial naïve bayes. In this class, we say counting tokens

• Not counting word occurrence, e.g. “so so great”, so 1, great 1 → 
Bernoulli naïve bayes. In this class, we say counting word types



The bag of words representation

γ( )=c

seen 2

sweet 1

whimsical 1

recommend 1

happy 1

... ...



Figure from Jurafsky and Martin



Naive Bayes Classifier

w1 w2 w3 w4

R

No dependencies among words!

One variable per token in document

𝑝(𝑤1, 𝑤2, … , 𝑤|𝐷| ∣ 𝑅) ≈ ∏
𝑖=1

|𝐷|

𝑝(𝑤𝑖 ∣ 𝑅)



Naïve Bayes on Movie Reviews

>>> classifier.show_most_informative_features(5)

classifier.show_most_informative_features(5)
Most Informative Features

contains(outstanding) = True              pos : neg    =     14.1 : 1.0
contains(mulan) = True              pos : neg    =      8.3 : 1.0

contains(seagal) = True              neg : pos    =      7.8 : 1.0
contains(wonderfully) = True              pos : neg    =      6.6 : 1.0

contains(damon) = True              pos : neg    =      6.1 : 1.0

• Train models for positive, negative

• For each review, find higher posterior

• Which word probability ratios are highest?



What’s Wrong With naïve Bayes?

• What happens when word dependencies are strong?

• What happens when some words occur only once?

• What happens when the classifier sees a new word?

We will talk more about naïve Bayes in the next lecture



ML for Naive Bayes
• Recall: p(+ | Damon movie)

        = p(Damon | +) p(movie | +) p(+)

• If corpus of positive reviews has 1000 words, and 
“Damon” occurs 50 times,

                   pML(Damon | +) = ?

• If pos. corpus has “Affleck” 0 times,

                  p(+ | Affleck Damon movie) = ?

Out of Vocabulary (OOV)!



Estimation for Markov (n-gram) models



Maximum Likelihood Estimates

The maximum likelihood estimate
• of some parameter of a model M from a training set T

• maximizes the likelihood of the training set T given the model M

Suppose the word “bagel” occurs 400 times in a corpus of a million words

• What is the probability that a random word from some other text will be 
“bagel”?

• MLE estimate is 400/1,000,000 = .0004

This may be a bad estimate for some other corpus
• But it is the estimate that makes it most likely that “bagel” will occur 400 

times in a million word corpus.

Unigram example



Estimating bigram probabilities

The Maximum Likelihood Estimate

Where

Total occurrences of  𝑤𝑖−1 as a first word in any bigram



Intuition for bigram MLE

• The probability of a word following another word is just 
the relative frequency of that bigram.

• If "the cat" appears 50 times, and "the" appears 200 
times in total, then:

• P(cat | the) = 50/200 = 0.25



The intuition of smoothing

When we have sparse statistics:

Count(w | denied the)
  3 allegations
  2 reports
  1 claims
  1 request

  7 total

Count(w | denied the)
  2.5 allegations
  1.5 reports
  0.5 claims
  0.5 request
  2 other

  7 total
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Steal probability mass to generalize better

(Example modified from Dan Klein!)



Add-one estimation

• Also called Laplace smoothing

• Pretend we saw each word one more time than we did

• Just add one to all the counts!

MLE estimate:

Add-1 estimate:

V be the vocabulary size



Compare with raw bigram counts

original

add-1
smoothed



Generalized Additive Smoothing

• Laplace add-one smoothing generally assigns too 
much probability to unseen words

• More common to use λ instead of 1: 
(Laplace is just a special case of where λ = 1)

interpolation

What’s 
the right 
λ?





Bias-variance tradeoff

• Bias: how far your model/estimator’s average prediction is from the 
true value

• High → model is too simple and not learning the pattern of the 
data → underfitting

• Low → the model can capture the data well

• Variance: how much your model/estimator’s prediction will fluctuate 
for different training sets

• High → model is too sensitive to training data → overfitting

• Low → predictions are stable; model can generalize well on 
different datasets

• You usually can’t minimize both bias and variance at the same time

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟

A little ML review, 
helpful for 
understanding MLE vs 
Smoothing 



Bias-variance tradeoff

• Maximum likelihood is asymptotically unbiased: with a 
lot of data, the estimator learns the true value 
accurately

• Smoothing reduces variance and introduces some 
bias (bias-variance tradeoff!)

• High-variance classifiers may overfit the training data, 
performing poorly out of sample or unseen data

• Too much smoothing can lead to underfitting: as 𝜆 →
∞ or 𝜇 → 0 we approach a uniform distribution, i.e., 
not learning the patterns from the training data



Bias-Variance Tradeoff



Backoff and Interpolation
Sometimes it helps to use a simpler model

• Condition on less context for contexts you know less about
 

Backoff: 
• If enough evidence, use trigram P(wn|wn−2wn−1) 
• If not, use bigram P(wn|wn−1) 
• Else unigram P(wn)

Interpolation: 
• mix unigram, bigram, trigram

Interpolation works better



Linear Interpolation

Simple interpolation

Lambdas conditional on context:



How to set λs for interpolation?
1. Use a held-out corpus aka development data

Choose λs to maximize probability of held-out data:
• Fix the N-gram probabilities (on the training data)

• Then search for λs that give largest probability to held-out set

2. K-fold cross-validation (jackknife)

3. Leave-one-out cross-validation

Training Data
Held-Out 

Data
Test 
Data



Summary: What to do if you never saw 
an n-gram in training
Smoothing: Pretend you saw every n-gram one (or k) times 
more than you did 
•  A blunt instrument (replacing a lot of zeros) but 

sometimes useful
Backoff: If you haven't seen the trigram, use the (weighted) 
bigram probability instead
•  Weighting is messy; "stupid" backoff works fine at 

web-scale
Interpolation: (weighted) mix of trigram, bigram, unigram 
•  Usually the best! We also use interpolation to 

combine multiple LLMs



Logistics 

• Assignment 1 is released

• Link to the recommended textbook is also online

• Office hours are online now. Attend if you need any 
help

• If you haven’t join Gradescope, make sure you do 
so. You will need this for submitting your coding 
assignment.

• Join Ed Discussion if you want to ask questions 
online.
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