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Logistics 

• Quiz 1 grade is released. If you were graded incorrectly, ask for a 
regrade on Gradescope!

• HW 2 is due next Tuesday.
• Check and submit your PDF early to ensure no problems.

• Start thinking about your project pitch
• It’s more important that the project is interesting than the final 

performance is state-of-the-art. The final performance should be 
reasonably well with justifications if it’s a hard task!

• Today: back to language models! RNN and sequence data.



High bias in a model usually leads to overfitting

    True or false?





Minor correction of last lecture

• One of you asked me the difference between stemming and 
lemmatization in the last lecture. Great question!

Last lecture I mentioned that stemming uses morphology, but it’s 
actually not completely correct.
• Stemming uses simple rules that is fast but doesn’t completely care 

about the true morphology. It simply crops words.
• Lemmatization is the one that actually cares about morphology. It uses 

linguistic resources like WordNet.
• Both are in nltk and common for text pre-processing, but it depends on 

your needs! Correctness or speed.



Memory is a strange thing. It does not work like I thought it did. We 
are so bound by time, by its order.

-- Louise Banks





Perplexity 

• Remember entropy?
• Measure average uncertainty in bits of a true distribution p(x)

• Then we have cross-entropy
• q(x) is the model distribution
• How well a predicted distribution q approximates the true distribution p

• Now, introduce perplexity, but it’s just putting cross-entropy in 
the the exponent
• Perplexity: How many option do you have (for the model to be confused)

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2𝐻(𝑝,𝑞)



Perplexity 

• The better / more advance the LLM, the lower the perplexity 
(average choices to be confused with)
• Make sense because you understand the language well so you don’t have 

“too many options”



Shen et al., 2017

Dataset:  the 
One billion word 
benchmark for 
measuring 
progress in 
statistical 
language 
modeling

https://gwern.net/doc/ai/scaling/2017-shen.pdf


Remember feedforward neural network 
(FFNN)?



Two-Layer Network with softmax output
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Recurrent Neural Network (RNN)

• Its architecture is different from the feedforward neural network.
• We mentioned that FFNN doesn’t have loops – it only goes one direction 
• RNN has loops

• We will start with the simplest RNN, also called Elman Networks
• There are more complex variants of RNN such as the LSTM
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Remember we talked about TIME 
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Forward inference

Computing h at time t requires that we first computed h at the 
previous time step!



Training in simple RNNs

+

U

V

W

yt

xt

ht

ht-1

Just like FFNN training:

• training set, 

• a loss function, 

• backpropagation 

Weights that need to be updated:

• W, the weights from the input layer to the hidden layer, 

• U, the weights from the previous hidden layer to the current hidden layer, 

• V, the weights from the hidden layer to the output layer. 
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Training in simple RNNs: unrolling in time
Unlike feedforward networks:

• 1. To compute 𝐿𝑜𝑠𝑠𝑡 , we need the ℎ𝑡−1 . 

• 2. ℎ𝑡  influences 𝑦𝑡 and ℎ𝑡+1 (and hence 
the 𝑦𝑡+1 and 𝐿𝑜𝑠𝑠𝑡+1).



Unrolling in time (2)

We unroll a recurrent network into a feedforward 
computational graph eliminating recurrence

1. Given an input sequence, 

2. Generate an unrolled feedforward network specific to input 

3. Use graph to train weights directly via ordinary backprop (or 
can do forward inference)
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The size of the conditioning context for different LMs

The n-gram LM: 

• Context size is the  n − 1 prior words we condition on.

The feedforward LM: 

• Context is the window size.

The RNN LM:  

• No fixed context size;  ht-1 represents entire history



Training RNN LM
• Self-supervision
• take a corpus of text as training material 

• at each time step t 

• ask the model to predict the next word. 

• Why called self-supervised: we don't need human labels; 
the text is its own supervision signal

• We train the model to 
• minimize the error

• in predicting the true next word in the training sequence, 

• using cross-entropy as the loss function. 



Teacher forcing
An algorithm for training the weights of RNNs:

• We always give the model the ground-truth history to predict the next word (rather than feeding the 
model the predicted from the prior time step).

 → make sure the RNN stays close to the ground-truth sequence

This is called teacher forcing (in training we force the context to be correct based on the gold words)

What teacher forcing looks like: 

• At word position t 

• the model takes as input the correct word wt together with ht−1, computes a probability distribution 
over possible next words 

• That gives loss for the next token wt+1

• Then we move on to next word, ignore what the model predicted for the next word and instead use 
the correct word wt+1 along with the prior history encoded to estimate the probability of token 
wt+2.
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Many other RNN variants

• LSTM
• Bidirectional RNN
• Stacked RNN
• Etc.



Motivating the LSTM: dealing with distance
It's hard to assign probabilities accurately when context is very far away:

Hidden layers are being forced to do two things:

• Provide information useful for the current decision, 

• Update and carry forward information required for future decisions. 

Another problem: During backprop, we have to repeatedly multiply 
gradients through time and many h's

• The "vanishing gradient" problem



The LSTM: Long short-term memory network

LSTMs divide the context management problem into two subproblems: 

• removing information no longer needed from the context, 

• adding information likely to be needed for later decision making

LSTMs add:
• explicit context layer

• Neural circuits with gates to control information flow



Forget gate

To delete information from the context that is no longer needed. 

Context vector to remove the 
information from context 
that’s no longer needed

Hadamard product: 
Multiply element-wise

Computes a 
weighted sum of the 
previous state h and 
current input, then 

pass through a 
sigmoid



Regular passing of information

Compute the actual information we need to extract from 
the previous hidden state and current inputs



Add gate

Selecting information to add to current context

Next, add this to the modified context vector to get our new context vector. 



Output gate

Finally, we use output gate to decide what information is required for the 
current hidden state 
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Figure8.13 A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the

current input, x, the previous hidden state, ht− 1, and the previous context, ct− 1. The outputs are a new hidden

state, ht and an updated context, ct .

Thefinal gatewe’ ll useistheoutput gatewhich isused to decidewhat informa-output gate

tion is required for the current hidden state (as opposed to what information needs

to bepreserved for future decisions).

ot = s (Uoht− 1 + Woxt) (8.26)

ht = ot tanh(ct) (8.27)

Fig. 8.13 illustrates the complete computation for a single LSTM unit. Given the

appropriate weights for the various gates, an LSTM accepts as input the context

layer, and hidden layer from the previous time step, along with the current input

vector. It then generates updated context and hidden vectors as output.

It is thehidden state, ht , that provides theoutput for theLSTM at each timestep.

Thisoutput can beused astheinput to subsequent layers in astacked RNN, or at the

final layer of anetwork ht can beused to provide thefinal output of the LSTM.

8.5.1 Gated Units, Layers and Networks

Theneural units used in LSTMsare obviously much morecomplex than those used

in basic feedforward networks. Fortunately, this complexity is encapsulated within

the basic processing units, allowing us to maintain modularity and to easily exper-

iment with different architectures. To see this, consider Fig. 8.14 which illustrates

the inputs and outputs associated with each kind of unit.

At the far left, (a) is thebasic feedforward unit whereasingleset of weights and

asingle activation function determine its output, and when arranged in a layer there

are no connections among the units in the layer. Next, (b) represents the unit in a

simple recurrent network. Now thereare two inputsand an additional set of weights

to go with it. However, there isstill asingle activation function and output.

The increased complexity of the LSTM units is encapsulated within the unit

itself. Theonly additional external complexity for theLSTM over thebasic recurrent

unit (b) is the presence of theadditional context vector asan input and output.

Thismodularity iskey to thepower and widespread applicability of LSTM units.

LSTM units(or other varieties, likeGRUs) can besubstituted intoany of thenetwork

architectures described in Section 8.4. And, as with simple RNNs, multi-layered

networksmaking useof gated unitscan beunrolled into deep feedforward networks



Units

FFN Simple RNN LSTM



RNN NLP applications



RNN applications

• Sequence labeling tasks
• PoS tagging

• Sequence classification tasks
• Sentiment analysis
• Topic classification

• Text generation tasks → new architecture: encoder-decoder



Sequence labeling
e.g. PoS tagging



RNNs for sequence labeling

Assign a label to each element of a sequence
• Part-of-speech tagging

Janet will back the bill

NNDTVBMDNNPArgmax

Embeddings

Words

e

h
Vh

y

RNN

Layer(s)

Softmax over
tags



RNN for classification



RNN for sequence classification

• We pass the text to be classified through the RNN a word at a 
time generating a new hidden layer representation at each time 
step. (𝑥1 , ℎ1) … (𝑥𝑛 , ℎ𝑛)

• We can then take the hidden layer for the last token of the text, 
ℎ𝑛 (n is the index), as a compressed representation of the entire 
sequence. 

• We can pass this representation ℎ𝑛 to a feedforward network 
that chooses a class via a softmax over the possible classes.

This is just one way to do it!



RNNs for sequence classification
• Text classification

• Other ways: Instead of taking the last state, we can also use some 
pooling function of all the output states, like mean pooling

x1

RNN

hn

x2 x3 xn

Softmax

FFN
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Figure8.8 Sequence classification using a simple RNN combined with a feedforward net-

work. Thefinal hidden state from theRNN isused as the input to a feedforward network that

performs theclassification.

pools all then hidden states by taking their element-wise mean:

hmean =
1

n

nX

i= 1

hi (8.15)

Or we can take the element-wise max; the element-wise max of a set of n vectors is

anew vector whosekth element is the max of thekth elements of all then vectors.

Thelong contextsof RNNsmakesit quitedifficult to successfully backpropagate

error all the way through the entire input; we’ ll talk about this problem, and some

standard solutions, in Section 8.5.

8.3.3 Generation with RNN-Based Language Models

RNN-based language models can also be used to generate text. Text generation is

of enormous practical importance, part of tasks like question answering, machine

translation, text summarization, grammar correction, story generation, and conver-

sational dialogue; any task where a system needs to produce text, conditioned on

some other text. This use of a language model to generate text is one of the areas

in which the impact of neural language models on NLP has been the largest. Text

generation, along with image generation and code generation, constitute a new area

of AI that isoften called generativeAI .

Recall back in Chapter 3 we saw how to generate text from an n-gram language

model by adapting asampling techniquesuggested at about thesametimeby Claude

Shannon (Shannon, 1951) and the psychologists George Miller and Jennifer Self-

ridge (Miller and Selfridge, 1950). We first randomly sample a word to begin a

sequence based on its suitability as the start of a sequence. We then continue to

sample words conditioned on our previous choices until we reach a pre-determined

length, or an end of sequence token is generated.

Today, thisapproach of using alanguage model to incrementally generate words

by repeatedly sampling the next word conditioned on our previous choices is called

autoregressive generation or causal LM generation. The procedure is basicallyautoregressive
generation

the same as that described on page ??, but adapted to aneural context:

• Sample a word in the output from the softmax distribution that results from

using the beginning of sentence marker, <s>, as thefirst input.



Text generation with RNN



Autoregressive generation

Today, this approach of using a language model to incrementally 

generate words by repeatedly sampling the next word 

conditioned on our previous choices is called autoregressive 

generation



Autoregressive generation

• Begin by:  <s>, as the first input.

• Sample a word in the output from the softmax distribution that 
results from <s>

• Use the word embedding for that first word as the input to the 
network at the next time step, and then sample the next word in 
the same fashion.

• Continue generating until the end of sentence marker, </s>, is 
sampled or a fixed length limit is reached.

beginning of 
sentence marker



Autoregressive generation

So long

<s>

and

So long and

?Sampled Word

Softmax

Embedding

Input Word

RNN



Encoder-decoder



Encoder-decoder networks

• Sometimes called sequence-to-sequence networks (seq2seq)
• Input and output length can be different
• Great for summarization, machine translation, question 

answering, and dialogue

Contextualized 
representation of input 

sequence



Encoder-decoder simplified

Source Text

Target Text
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decoder

Then hidden states to 
output



Training the encoder-decoder with teacher 
forcing
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Total loss is the average 
cross-entropy loss per 

target word:



Attention 



Problem with passing context c only from end

Requiring the context c to be only the encoder’s final hidden state 
forces all the information from the entire source sentence to pass 
through this representational bottleneck. 



Solution: Attention!

• Instead of being taken from the last hidden state, the context it’s a 
weighted average of all the hidden states of the encoder. 

• This weighted average is also informed by the state of the decoder 
right before the current token i. 

“weighted average” 
meaning, 𝑐𝑖 can attend to a 
particular part of the input 
text that is relevant to token 
I, which is what the decoder 
is trying to produce



Attention
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In theattention mechanism, asin thevanillaencoder-decoder model, thecontext

vector c is asingle vector that is a function of the hidden states of the encoder. But

instead of being taken from the last hidden state, it’s a weighted average of all the

hidden states of the decoder. And this weighted average is also informed by part of

the decoder state as well, the state of the decoder right before the current token i.

That is, c = f (he1 . . .h
e
n,h

d
i−1). Theweights focuson (‘attend to’) aparticular part of

thesourcetext that isrelevant for thetoken i that thedecoder iscurrently producing.

Attention thusreplaces thestatic context vector with onethat isdynamically derived

from the encoder hidden states, but also informed by and hence different for each

token in decoding.

This context vector, ci , is generated anew with each decoding step i and takes

all of the encoder hidden states into account in its derivation. We then make this

context available during decoding by conditioning the computation of the current

decoder hidden stateon it (along with theprior hidden stateand thepreviousoutput

generated by thedecoder), aswesee in thisequation (and Fig. 8.21):

hdi = g(ŷi−1,h
d
i− 1,ci) (8.34)

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

Figure8.21 The attention mechanism allows each hidden state of the decoder to see a

different, dynamic, context, which isafunction of all theencoder hidden states.

Thefirst step in computing ci is to computehow much to focuson each encoder

state, how relevant each encoder state is to the decoder state captured in hdi−1. We

capturerelevanceby computing— at each state i duringdecoding—ascore(hdi− 1,h
e
j )

for each encoder state j.

Thesimplest such score, called dot-product attention, implements relevanceasdot-product
attention

similarity: measuring how similar the decoder hidden state is to an encoder hidden

state, by computing thedot product between them:

score(hdi−1,h
e
j) = hdi− 1 · hej (8.35)

The score that results from this dot product is a scalar that reflects the degree of

similarity between thetwo vectors. Thevector of thesescoresacrossall theencoder

hidden states gives us the relevance of each encoder state to the current step of the

decoder.

To make use of these scores, we’ ll normalize them with a softmax to create a

vector of weights, a i j , that tellsustheproportional relevanceof each encoder hidden

state j to theprior hidden decoder state, hdi−1.

a i j = softmax(score(hdi− 1,h
e
j ))

=
exp(score(hdi−1,h

e
j)

P
kexp(score(hdi− 1,h

e
k))

(8.36)

Finally, given thedistribution ina , wecan computeafixed-length context vector for

the current decoder state by taking a weighted average over all the encoder hidden

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …



How to compute 𝑐𝑖  ? How to decide what to 
pay attention to? 
• One way is similarity! 

• Using similarity as a scoring function between last decoder state and each 
encoder hidden state

• Simplest such score is dot-product attention.
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How to compute 𝑐𝑖  ? How to decide what 

• We’ll normalize these similarity scores of each encoder hidden 
states with a softmax to create weights αi j , that tell us the 
relevance of encoder hidden state j to hidden decoder state,  hd

i-1

• And then use this to help create a weighted average of all the 
encoder hidden states:
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Encoder-decoder with attention, focusing on the 
computation of c

Using dot product to compute the 
similarity between an encoder hidden 
state and prior decoder hidden state



• Recommended reading: Jurafsky and Martin Chapter 13!

• Now that we talked about attention, we are ready to talk about 
transformers and self-attention in the next lecture!
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