Sequence Data, Recurrent
Networks, and Attention

CS 6120 Natural Language Processing
Northeastern University

SiWu

Borrowed some slides from Jurafsky & Martin Chapter 13

Logistics

* Quiz 1 grade is released. If you were graded incorrectly, ask for a
regrade on Gradescope!

* HW 2 is due next Tuesday.
* Check and submit your PDF early to ensure no problems.

e Start thinking about your project pitch

* |t’s more important that the project is interesting than the final
performance is state-of-the-art. The final performance should be

reasonably well with justifications if it’s a hard task!
* Today: back to language models! RNN and sequence data.

High bias in a model usually leads to overfitting

True or

error

Zone

underfitting

overfitting
zone

generalization (test)

* -
,* variance

° *
L 4
L4
*r
+*

- = #
- = -+

. *

= *

. -

L] : *'
- - *
. L
o2 : :
e irreducible error
IIIIIIIIIIIIIIII ‘.I‘IIIIII'IIIIIIIIIII:#ﬁllllllI.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
L -.-i'

"
LI
L
LI
m o,
®
.....

training error

model complexity

Minor correction of last lecture

* One of you asked me the difference between stemming and
lemmatization in the last lecture. Great question!

Last lecture | mentioned that stemming uses morphology, but it’s
actually not completely correct.

 Stemming uses simple rules that is fast but doesn’t completely care
about the true morphology. It simply crops words.

* Lemmatization is the one that actually cares about morphology. It uses
linguistic resources like WordNet.

* Both are in nltk and common for text pre-processing, but it depends on
your needs! Correctness or speed.

Memory is a strange thing. It does not work like | thought it did. We
are so bound by time, by its order.

-- Louise Banks

AMY ADAMS JEREMY.R N|

“Shining, haunting, mind-blowing. . . .
Ted Chiang is so exhilarating so original
s0 stylish he just leaves you speechless.”

—JUNOT DfAZ

ANNALS OF ARTIFICIAL INTELLIGENCE

CHATGPT IS A BLURRY JPEG OF THE WEDB

OpenAls chatbot offers paraphrases, whereas Google offers quotes. Which do we prefer?
F L4 i Fi] L Fi J

By Ted Chiang
February 9, 2023

Why A.l. Isn't Going to Make Will A.l. Become the New
Art McKinsey?
Ted Chiang . Ted Chiang

" The New Yorker - Au... - ¥? The New Yorker - Ma...

Perplexity

—) _p(z)logp(z)
« Remember entropy? T

* Measure average uncertainty in bits of a true distribution p(x)

 Then we have cross-entropy ZP 103 q)

* g(x) is the model distribution
* How well a predicted distribution g approximates the true dlstrlbutlon P

* Now, introduce perplexity, but it’s just putting cross-entropy in
the the exponent
* Perplexity: How many option do you have (for the model to be confused)

Perplexity = 2H®.@)

Perplexity

* The better / more advance the LLM, the lower the perplexity
(average choices to be confused with)

* Make sense because you understand the language well so you don’t have
“too many options”

Human Judgement Score

10

Human Judgement Score wrt. Perplexity

rnnme
maxent
ngram&ffnn
rnn&lstm

1708

Human: ?

human performance

\
\ LSTM: 2012

v/ .| RNNME: 2011
¥ RNN: 2010

U FENN: 2003
KN-NGRAM: 1998 ® € e
MAXENT: 1996

12

20 33 55 90 148 245 403
Perplexity

665

Dataset: the
One billion word
benchmark for
measuring
progress in
statistical
language
modeling

https://gwern.net/doc/ai/scaling/2017-shen.pdf

Remember feedforward neural network
(FFNN)?

Two-Layer Network with softmax output
O y = softmax(z)

S Map hidden features
Z — Uh’ into the output space,
let the network learns
how to combine them

hidden units |) h=oc(Wx+b)

Each row of Wis h; weights
for each input feature

Output layer

W;; is the weight of input x;

to hidden unit at hj

Input layer

Recurrent Neural Network (RNN)

e |ts architecture is different from the feedforward neural network.

* We mentioned that FFNN doesn’t have loops - it only goes one direction
* RNN has loops

* We will start with the simplest RNN, also called Elman Networks
* There are more complex variants of RNN such as the LSTM

Feedforward Neural Network (FFNN) Recurrent Neural Network (RNN)

output Vi output V¢

Now, let’s be
more precise!

Hidden states Hidden states

Input Xt Input Xt

Remember we talked about TIME

Output Yt ye = f(Vhy)

Forexample,
f is softmax

- < =)

hy h; = g(Uh_; + Wxy)

From last time step

Multiply the input x; with
weight matrix W
Input X¢

Forward inference

Computing h at time t requires that we first computed h at the
previous time step!

function FORWARDRNN(x, network) returns output sequence y

ho+0

for i <1 to LENGTH(X) do
hf‘:—g(Uhj_l -+ W}L’i)
yi f(Vh;)

return y

Training in simple RNNs

Just like FFNN training:

(Yt)
e training set, \ Y /
i C hy)
* aloss function,
| S
* backpropagation 1

U w

(hy_4) (X;

Weights that need to be updated:

W, the weights from the input layer to the hidden layer,

* U, the weights from the previous hidden layer to the current hidden layer,
* V, the weights from the hidden layer to the output layer.

Training in simple RNNs: unrolling in time

Unlike feedforward networks:

* 1. To compute Loss;, we need the h;y_; .

* 2. h; influences y; and h;, 4 (and hence
the y;,1 and Loss;1).

Unrolling in time (2) S——

(7) (h) (%
v u w
(2)
M
Ch) (X1)

We unroll a recurrent network into a feedforward
computational graph eliminating recurrence

1.
2.
3.

Given an input sequence,
Generate an unrolled feedforward network specific to input

Use graph to train weights directly via ordinary backprop (or
can do forward inference)

The size of the conditioning context for different LMs

The n-gram LM:
* Context size is the n -1 prior words we condition on.

The feedforward LM:
e Context is the window size.

The RNN LM:
* No fixed context size; h;_q represents entire history

Training RNN LM

e Self-supervision
* take a corpus of text as training material
e ateachtimestept
e ask the model to predict the next word.

* Why called self-supervised: we don't need human labels;
the text is its own supervision signal

* We train the model to
* minimize the error
* in predicting the true next word in the training sequence,
e using cross-entropy as the loss function.

Teacher forcing

An algorithm for training the weights of RNNs:

* We always give the model the ground-truth history to predict the next word (rather than feeding the
model the predicted from the prior time step).

- make sure the RNN stays close to the ground-truth sequence
This is called teacher forcing (in training we force the context to be correct based on the gold words)

What teacher forcing looks like:
e At word position t

* the model takes as input the correct word wt together with ht-1, computes a probability distribution
over possible next words

* That gives loss for the next token wt+1

* Then we move on to next word, ignore what the model predicted for the next word and instead use
the correct word wt+1 along with the prior history encoded to estimate the probability of token
wit+2.

Predict next word
w;,1and compute loss

& <y'5;>

Wt
correct

t t+1

You compute loss with
ground truth and
predicted next word,
but you move on with
correct history to stay
on track!

Many other RNN variants

 LSTM

* Bidirectional RNN
* Stacked RNN

* Etc.

Motivating the LSTM: dealing with distance

It's hard to assign probabilities accurately when context is very far away:

Hidden layers are being forced to do two things:
* Provide information useful for the current decision,
 Update and carry forward information required for future decisions.

Another problem: During backprop, we have to repeatedly multiply
gradients through time and many h's

* The "vanishing gradient" problem

The LSTM: Long short-term memory network

LSTMs divide the context management problem into two subproblems:
* removing information no longer needed from the context,

* adding information likely to be needed for later decision making

LSTMs add:

 explicit context layer
* Neural circuits with gates to control information flow

Forget gate

To delete information from the context that is no longer needed. _Computes a
weighted sum of the

previous state h and
current input, then

G(Ufht—l —I— fot) pass through a

sigmoid
c;—1 Of

=
1

Hadamard product:

Multiply element-wise

Context vector to remove the
information from context
that’s no longer needed

Regular passing of information

g, — tanh(ught_l ngt)

Compute the actual information we need to extract from
the previous hidden state and current inputs

Add gate g = tanh(Ugh; | +W,x;)

Selecting information to add to current context
it — G(Uiht_1+Wixt)
i = 8Ok

Next, add this to the modified context vector to get our new context vector.

c: = J; + ki

Output gate

Finally, we use output gate to decide what information is required for the
current hidden state

or = S(Uoht-1+ Woxy)
hy = of©®tanh(cy)

Units

(a) (b) (©)
FFN Simple RNN LSTM

RNN NLP applications

RNN applications

* Sequence labeling tasks
* PoS tagging

* Sequence classification tasks

 Sentiment analysis
* Topic classification

* Text generation tasks = new architecture: encoder-decoder

Seguence labeling

e.g. PoS tagging

RNNSs for sequence labeling

Assign a label to each element of a sequence
* Part-of-speech tagging

Argmax NNP MD VB DT NN
A A A A A
y
[~)
Soft
° r’tnaag);.,over [DDUD MDD } [o Hﬁﬂﬂ } [DDUD MDD } [[0 Hﬁﬂ } [o Hﬁﬂﬂ }
A A A A A
Vh
RNN h
Layer(s) _ A A A A A)

Words Janet will back the bill

RNN for classification

RNN for sequence classification

* We pass the text to be classified through the RNN a word at a
fime generating a new hidden layer representation at each time

step. (x1,h1) ... (Xn , hn)
* We can then take the hidden layer for the last token of the text,
h,, (nis the index), as a compressed representation of the entire

sequence.

* We can pass this representation h,, to a feedforward network
that chooses a class via a softmax over the possible classes.

This is just one way to do it!

RNNs for sequence classification

 Text classification
(Softmax)

(FFN>

—

[1 | | RNN
1 x 3

I a

* Other ways: Instead of taking the last state, we can also use some

pooling function of all the output states, like mean pooling
1 X
Nmean = — h;

n
=1

Text generation with RNN

Autoregressive generation

Today, this approach of using a language model to incrementally
generate words by repeatedly sampling the next word
conditioned on our previous choices is called autoregressive
generation

beginning of
sentence marker

Autoregressive generation

« Begin by: <s>, as the first input.

« Sample a word in the output from the softmax distribution that
results from <s>

» Use the word embedding for that first word as the input to the

network at the next time step, and then sample the next word in
the same fashion.

« Continue generating until the end of sentence marker, </s>, is
sampled or a fixed length limit is reached.

Sampled Word

Autoregressive generation

< @80 o
A a(/
N\

(@))

<~ @00—C
- Oy,
//
+Q|%u«
A //

N

A.Ql«u

= g 2

Z S =

nd 2 5
\. J § £

Encoder-decoder

Encoder-decoder networks

* Sometimes called sequence-to-sequence networks (seq2seq)

* Input and output length can be different

* Great for summarization, machine translation, question
answering, and dialogue

Contextualized
representation of input
sequence

Encoder-decoder simplified

Then hidden states to
A function of all previous

. : output
machine translation hidden states. Convey the Target Text
essence of the input tg—— N
decoder e e e e
llego la bruja verde </s>
™\ I I I t f

|

|

|

|

softmax [~ (output of source is ignored) N |
() 1 (e)

|

|

|

T I I t

hidden h

f !

|
|
|
|
|
|
|
|
|
|
|
|
X ! X
|
|
|
|
|
|
|
|

|

G | Gl
I
|

|
|
|
|
|
|
|
|
|
|
n / >| > : >
|
|
|
|
|
|
|
|
|

Iayer(s) EEEE——— EEEE——— - P >
I
N) [} [} \)) — : F
embedding | :
layer | |
. . l V4 . l
the green witch arrived <s> I llego la bruja | verde
A hd R4 A
N— - % e / |7
—
Separator

Source Text

Training the encoder-decoder with teacher

forcing

Total loss is the average
cross-entropy loss per
target word:

Decoder

—~
 gold
Ve'l’de /|S answers
yit yj

log P(y,)| |-logP(ys)| Perword

loss

A A

—»>

@ (mﬂﬂnﬂ) \ sof’;;nax

hidden
layer(s)
J

r
N 4
tr;e gréen
N—

i

arrlved

Encoder

A 1
embedcing

bruja verde

Attention

Problem with passing context ¢ only from end

Requiring the context ¢ to be only the encoder’s final hidden state
forces all the information from the entire source sentence to pass

through this representational bottleneck.
bottleneck Decoder

LEE BB =

-y

Encoder

Solution: Attention!

* Instead of being taken from the last hidden state, the context it’s a
weighted average of all the hidden states of the encoder.

* This weighted average is also informed by the state of the decoder
right before the current token . N

Cl — f(hfi C he @ “weighted average”

meaning, ¢; can attend to a
particular part of the input
text that is relevant to token
|, which is what the decoder
IS trying to produce

Attention

How to compute ¢; ? How to decide what to
pay attention to?

* One way is similarity!

* Using similarity as a scoring function between last decoder state and each
encoder hidden state

e Simplest such score is dot-product attention.

For each encoder SCOFG(h,-d_1,he-) = h;j_1 - he
state j J /

How to compute ¢; ? How to decide what

 We'll normalize these similarity scores of each encoder hidden
states with a softmax to create weights a; ;, that tell us the
relevance of encoder hidden state j to hidden decoder state, hd. ,

ajj = softmax (score(h?. i,h7))

* And then use this to help create a weighted average of all the
encoder hidden states:
= D ai;h
J

Encoder-decoder with attention, focusing on the
computation of c

Using dot product to compute the
similarity between an encoder hidden Decoder
state and prior decoder hidden state

attention
weights
a/ij

hidden
layer(s)

* Recommended reading: Jurafsky and Martin Chapter 13!

* Now that we talked about attention, we are ready to talk about
transformers and self-attention in the next lecture!

	Slide 1: Sequence Data, Recurrent Networks, and Attention
	Slide 2: Logistics
	Slide 3
	Slide 4
	Slide 5: Minor correction of last lecture
	Slide 6
	Slide 7
	Slide 8: Perplexity
	Slide 9: Perplexity
	Slide 10
	Slide 11: Remember feedforward neural network (FFNN)?
	Slide 12: Two-Layer Network with softmax output
	Slide 13: Recurrent Neural Network (RNN)
	Slide 14
	Slide 15: Remember we talked about TIME
	Slide 16
	Slide 17: Forward inference
	Slide 18: Training in simple RNNs
	Slide 19: Training in simple RNNs: unrolling in time
	Slide 20: Unrolling in time (2)
	Slide 21: The size of the conditioning context for different LMs
	Slide 22: Training RNN LM
	Slide 23: Teacher forcing
	Slide 24
	Slide 25: Many other RNN variants
	Slide 26: Motivating the LSTM: dealing with distance
	Slide 27: The LSTM: Long short-term memory network
	Slide 28: Forget gate
	Slide 29: Regular passing of information
	Slide 30: Add gate
	Slide 31: Output gate
	Slide 32: Units
	Slide 33: RNN NLP applications
	Slide 34: RNN applications
	Slide 35: Sequence labeling
	Slide 36: RNNs for sequence labeling
	Slide 37: RNN for classification
	Slide 38: RNN for sequence classification
	Slide 39: RNNs for sequence classification
	Slide 40: Text generation with RNN
	Slide 41: Autoregressive generation
	Slide 42: Autoregressive generation
	Slide 43: Autoregressive generation
	Slide 44: Encoder-decoder
	Slide 45: Encoder-decoder networks
	Slide 46: Encoder-decoder simplified
	Slide 47: Training the encoder-decoder with teacher forcing
	Slide 48: Attention
	Slide 49: Problem with passing context c only from end
	Slide 50: Solution: Attention!
	Slide 51: Attention
	Slide 52: How to compute c sub i. ? How to decide what to pay attention to?
	Slide 53: How to compute c sub i. ? How to decide what
	Slide 54: Encoder-decoder with attention, focusing on the computation of c
	Slide 55

