
Linear Classifiers:
Naïve Bayes, Logistic Regression

CS 6120 Natural Language Processing
Northeastern University

Si Wu

Logistics

• The first coding assignment was released.
• You can find it on the class website under the syllabus
• Due next Friday 11:59pm on Gradescope
• Gradescope: make sure you select the corresponding pages for each

question
• We just added the late policy for coding assignments on the

course website.
• The late policy doesn’t apply to the in-class quizzes.

• Increased total seats from 59 to 64 for this session to
accommodate a few students on the waitlist.
• Watch out for emails for enrollment if you are on the waitlist

Review

• Last time we learned:
• Regular expressions
• Zipf’s law (rank & frequency)
• Conditional probability and chain rule
• First and second order Markov assumption
• Naïve bayes, prior, likelihood, posterior
• Maximum likelihood
• Smoothing

• Today: continue more on naive Bayes, and introduce other linear classifiers
• These are supervised machine learning models
• Still little math heavy, but it’s built upon last lecture

• Helpful textbook chapter: Jurafsky and Martin Chapter 4
• Some slides on gradient descent and loss function from this lectures are from this book

chapter too

https://web.stanford.edu/~jurafsky/slp3/4.pdf

Additional comments from last
lecture

Bias-variance tradeoff

• Bias: how far your model/estimator’s average prediction is from the true value

• High → model is too simple and not learning the pattern of the data → underfitting

• Low → the model can capture the data well

• Variance: how much your model/estimator’s prediction will fluctuate for different training sets

• High → model is too sensitive to training data → overfitting

• Low → predictions are stable; model can generalize well on different datasets

• You usually can’t minimize both bias and variance at the same time

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟

A little ML review,
helpful for
understanding MLE vs
Smoothing

Examples of text classification tasks

• Sentiment analysis
• Spam detection
• Toxicity detection
• Etc.

Classification: to put a label on a text, and the labels are from some pre-
defined categories

• {positive, negative}
• Movie genre, e.g. {comedy, horror, romantic, scifi}
• Emotion/sentiment, e.g. {happy, sad, worried, sarcastic, despise}
• Language id, e.g. {English, French, Mandarin, Spanish}

Pre-processing text for classification

• From a string of text, we can
• Use them as is, sort of

• Bag of words
• Then use word count or frequency.

• Turn it into a more abstract representation
• Feature vectors

• Designed features
• Learned features (unsupervised learning). You need to define the number of dimensions.

Bag of words

Bag of words

Potstickers ⎵ are ⎵ just ⎵ pan-fried ⎵ dumplings

are just

separated by space

English:

Bag of words (not always separated by space)

我和奶奶一起包饺子

和 奶
起

包
饺

子

Chinese: Unlike English, Chinese isn’t
space-delimited.
Each character is an
independent graphological unit,
the more meaningful semantic
unit could be made of one or
more characters.

我

Me and grandma (are) making dumplings together

separated
by character

separated by
semantic
unit

What about bag of words as…
vector?

Raw text:

“a doctor has a lot of
patients waiting.”

lot 1

a 2

hospital 0

dumpling 0

is 0

apple 0

doctor 1

of 1

… …

Bag-of-words vector

This feature vector
will be very sparse
if the vocabulary of
the corpus is huge.
Most of the entry
there will be zero.

Dealing with sparsity

• Dimensionality reduction: project sparse vector to a lower-dimensional
dense space
• Latent semantic analysis (LSA): document-term matrix then SVD
• Principal component analysis (PCA)

• Feature selection:
• Only keeping the most informative words
• E.g. use a threshold for frequency, only keeping words that occur > 100 times

• Weighting schemes:
• TF-IDF: BoW but instead of just word counts, it weights the importance of a word

for a document.

• Using word embeddings and other embeddings
• Much smaller in terms of dimension size
• Next lecture!

Linear classifier

• (Some)naïve Bayes, logistic regression, support vector machine, single-
layer perceptron are all linear classifiers

• There are two kinds of linear classifier:
• Generative: try to model how the data was generated for each class (think likelihood

from last lecture about naïve Bayes), learn the probability distribution for each class,
then classify (think posterior)
• Naive Bayes classifier

• Discriminative: doesn’t care how the data was generated, instead, directly learn the
boundaries that separate classes
• “linear” classifier measn the decision boundary is linear
• Logistic regression
• Support vector machines (SVM)

Naïve Bayes Classifier

• It’s a generative classifier
• Linear if Bernoulli or multinomial
• In the log space:

• Optional: you can read more about the math behind it here
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lectureno
te05.html

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html

Input text

𝑥

Predicted probability for each
class in 𝑌 = {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}

𝑃 𝑦1 𝑥 = ?

𝑃 𝑦2 𝑥 = ?

𝑃 𝑦3 𝑥 = ?

𝑃 𝑦4 𝑥 = ?

𝑃 𝑦5 𝑥 = ?

𝑓

Our goal for probabilistic classification
High-level:

𝑷(𝑬𝒏𝒈𝒍𝒊𝒔𝒉|𝒙)= 0.99

𝑃(𝑆𝑝𝑎𝑛𝑖𝑠ℎ|𝑥) = 0.005

𝑃(𝑅𝑢𝑠𝑠𝑖𝑎𝑛|𝑥) = 0.003

𝑃(𝑀𝑎𝑛𝑑𝑎𝑟𝑖𝑛|𝑥) = 0.001

𝑃(𝐻𝑖𝑛𝑑𝑖|𝑥) = 0.001

𝑥 = “I am learning
logistic regression”

𝑦1 = 𝐸𝑛𝑔𝑙𝑖𝑠ℎ
𝑦2 = 𝑆𝑝𝑎𝑛𝑖𝑠ℎ
…

Example

Task: identifying language

𝑓

Discriminative linear classifier

• Generally, it can be expressed as:

• This is high-level how we learn from the training data

𝑓 𝑥 = ෍

𝑖=1

𝑑

𝑤𝑖𝑥𝑖 = 𝑤𝑇𝑥 + 𝑏

or expressed as a dot product of vector 𝒘 and 𝒙:

𝑓 𝑥 = 𝒘 ∙ 𝒙 + 𝑏

• Where 𝑤 is the vector of weights, and 𝑏 is the bias term, and 𝒙 is the
feature vector

• Each 𝑤𝑖 is corresponding to an 𝑥𝑖, and 𝑤𝑖 is a real number

𝑓 𝑥 = 𝒘 ∙ 𝒙 + 𝑏

• Each 𝑤𝑖 learns how important the feature 𝑥𝑖
• If 𝑤𝑖 > 0, larger 𝑥𝑖 will make 𝑓 𝑥 score go higher
• If 𝑤𝑖 < 0, larger 𝑥𝑖 will make 𝑓 𝑥 score go lower
• If 𝑤𝑖 = 0, 𝑥𝑖 is irrelevant to the decision

• However, since 𝑤𝑖 is a real number, −∞ < 𝑓 𝑥 < ∞

• We need a special function to map/squash 𝑓 𝑥 between 0 and 1to get a
valid probability value

 → Sigmoid and softmax functions!

Logistic regression

Logistic regression

• It’s a type of probabilistic classifier
• Each label will get a probability for the text we are classifying on

• It’s discriminative
• It’s a linear classifier: decision boundary is linear
• Supervised learning:

• Training: learn the pattern
• Test: how good was the learning?
• All data are labeled

Input text

𝑥

Predicted probability for each
class in 𝑌 = {𝑦1, 𝑦2}

𝑃(𝑦1|𝑥)

𝑃(𝑦2|𝑥)

𝑓 =

With sigmoid function

Smooth and differentiable
Good for gradient-based optimization and gradient
descent for neural network (future lecture)

Sigmoid function
• For when number of labels is 2, i.e.

binary classification
• E.g. Y = {negative, positive}

• This function helps us make the
decision between two classes and
output the probability in the range
(0,1)

e.g.
0 < 𝑝(𝑦 = “𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒” |𝑥) < 1

𝑝 𝑦 = “𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒” 𝑥 + 𝑝 𝑦 = “𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒” 𝑥 = 1

0 < 𝑝(𝑦 = “𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒” |𝑥) < 1

Let’s go from try to squash f(x) into range (0,1)
with sigmoid function

𝑓 𝑥 = 𝒘 ∙ 𝒙 + 𝑏

Apply Sigmoid 𝜎 to 𝑓 𝑥 , and we get:

 p y = “𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒” 𝑥 = 𝜎(𝒘 ∙ 𝒙 + 𝑏)

Note that sigmoid function 𝜎 =
1

1+ 𝑒−𝑥 .
We use exp(𝑥) to denote 𝑒𝑥

Then

p y = “𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒” 𝑥 = 𝜎 𝒘 ∙ 𝒙 + 𝑏

=
1

1 + exp(− 𝒘 ∙ 𝒙 + 𝑏)

• Now we know p y = “𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒” 𝑥 , What about
p y = “𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒” 𝑥 ?

p y = “𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒” 𝑥

Since sigmoid has the property of
𝜎 −𝑥 = 1 − 𝜎 𝑥

It’s perfect for binary classification, because now

 p y = “𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒” 𝑥 = 1 − p y = “𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒” 𝑥

(Optional whiteboard
activity)

We can prove this!

Scaling up!

• So far we are only talking about using one input
• What if we have 1000 input that we need to classify? E.g. a batch of

reviews from different people, each review has 100 words?
• This is where we use matrix instead of vector

Before, with vector:
 𝑦 = 𝝈(𝒘 ∙ 𝒙 + 𝑏)

With matrix:
 ො𝑦 = 𝝈(𝑿 ∙ 𝒘 + 𝒃)

With multiple input X: ො𝑦 = 𝝈(𝑿 ∙ 𝒘 + 𝒃)

Apply sigmoid

• Each row of X is an input, of 2 features, and there are 3 input
• Each row of w modify a feature
• Notice that b is a scalar

Useful note for the future

• We just talked about
𝑓 𝑥 = 𝒘 ∙ 𝒙 + 𝑏

• Let the score 𝑧 = 𝑓 𝑥 , z is called the logit, because it is the
input of sigmoid, and the inverse of sigmoid function is called the
logit function

 𝑙𝑜𝑔𝑖𝑡 𝑝 = σ−1 𝑝 = ln
𝑝

1−𝑝
 for 𝑝 ∈ (0,1)

Softmax function

• For multiclass classification, we use softmax instead of sigmoid.
• In the case of logistic regression, it’s call multinomial logistic regression

• Same as sigmoid, it can map values to the range (0,1)

• Given a vector 𝑧 = 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝐾 𝑤ℎ𝑒𝑟𝑒 𝐾 > 1

But exactly how do we learn with
weights and bias terms?
Loss function and optimization

• Supervised classification:
• We know the correct label y (either 0 or 1) for each x.
• But what the system produces is an estimate, ො𝑦

• We want to set w and b to minimize the distance between our
estimate ො𝑦(i) and the true y(i).
• We need a distance estimator: a loss function or a cost function
• We need an optimization algorithm to update w and b to minimize the

loss.

Loss function

• The goal of loss function is to make the predicted results more
similar to the gold label
• By minimizing the distance between the predicted output and ground

truth
• This is how we measure how well the model is learning

• A common loss function is cross-entropy loss function
• More on this later

Loss function: the distance between ො𝑦 and y

We want to know how far is the classifier output:

 ො𝑦 = σ(w∙x+b)

from the true output:

 y [= either 0 or 1]

We'll call this difference:

 L(ො𝑦 ,y) = how much ො𝑦 differs from the true y

Deriving cross-entropy loss for a single observation x

• Goal: maximize probability of the correct label p(y|x)
• Since there are only 2 discrete outcomes (0 or 1) we can express the

probability p(y|x) from our classifier (the thing we want to maximize) as

noting:
 if y=1, this simplifies to ො𝑦

 if y=0, this simplifies to 1- ො𝑦

Deriving cross-entropy loss for a single observation x

Now take the log of both sides (mathematically handy)

Whatever values maximize log p(y|x) will also maximize p(y|x)

Goal: maximize probability of the correct label p(y|x)

Maximize:

Maximize:

Deriving cross-entropy loss for a single observation x

Now flip sign to turn this into a loss: something to minimize
Cross-entropy loss (because is formula for cross-entropy(y, ො𝑦))

Or, plugging in definition of ො𝑦:

Goal: maximize probability of the correct label p(y|x)

Maximize:

Minimize:

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights
𝛳=(w,b)
• And we’ll represent ො𝑦 as f (x; θ) to make the dependence on θ more

obvious

We want the weights that minimize the loss, averaged over all examples:

Optimization

• Now that we have a loss function, we need to minimize it
• We minimize by updating weights

• Most common optimization technique is gradient descent, where
we iteratively update our weights

Our goal: minimize the loss

For logistic regression, loss function is convex
• A convex function has just one minimum
• Gradient descent starting from any point is guaranteed to

find the minimum
• (Loss for neural networks is non-convex)

Gradients

• The gradient of a function of many variables is a vector pointing in
the direction of the greatest increase in a function.

• Gradient Descent: Find the gradient of the loss function at the
current point and move in the opposite direction.

How much do we move in that direction ?

• The value of the gradient (slope in our example) 𝑑

𝑑𝑤
𝐿(𝑓 𝑥; 𝑤 , 𝑦)

weighted by a learning rate η
• Higher learning rate means move w faster

10 CHAPTER 5 • LOGISTIC REGRESSION

example):

wt+1 = wt − h
d

dw
L(f (x;w),y) (5.14)

Now let’sextend the intuition from a function of onescalar variablew to many

variables, becausewedon’ t just want to move left or right, wewant to know where

in theN-dimensional space (of theN parameters that makeup q) weshould move.

The gradient is just such a vector; it expresses the directional components of the

sharpest slopealong each of thoseN dimensions. If we’rejust imagining twoweight

dimensions(say for oneweightwandonebiasb), thegradient might beavector with

two orthogonal components, each of which tells ushow much theground slopes in

thew dimension and in theb dimension. Fig. 5.4 showsavisualization of thevalue

of a2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure5.4 Visualization of thegradient vector at the red point in two dimensionsw and b,

showing thegradient asared arrow in thex-y plane.

In an actual logistic regression, theparameter vector w ismuch longer than 1 or

2, since the input feature vector x can be quite long, and we need a weight wi for

each xi . For each dimension/variablewi inw (plus thebiasb), thegradient will have

a component that tells us the slope with respect to that variable. Essentially we’re

asking: “Howmuchwould asmall change in that variablewi influence the total loss

function L?”

In each dimensionwi , weexpress theslopeasapartial derivative
∂
∂wi

of the loss

function. Thegradient is then defined asavector of thesepartials. We’ ll represent ŷ

as f (x;q) tomakethedependenceon q moreobvious:

—qL(f (x;q),y)) =

2

6
6
6
6
4

∂
∂w1
L(f (x;q),y)

∂
∂w2
L(f (x;q),y)

...
∂
∂wn
L(f (x;q),y)

3

7
7
7
7
5

(5.15)

Thefinal equation for updating q based on thegradient is thus

qt+ 1 = qt − h—L(f (x;q),y) (5.16)

Real gradients

• Are much longer; lots and lots of weights
• For each dimension wi the gradient component i tells us the slope

with respect to that variable.
• “How much would a small change in wi influence the total loss function

L?”
• We express the slope as a partial derivative ∂ of the loss ∂wi

• The gradient is then defined as a vector of these partials.

The gradient

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times thegradient (or the slope, in our single-variable example):

wt+ 1 = wt − h
d

dw
f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variablew to many

variables, becausewedon’ t just want to move left or right, wewant to know where

in theN-dimensional space (of theN parameters that make up q) we should move.

The gradient is just such a vector; it expresses the directional components of the

sharpest slopealong each of thoseN dimensions. If we’re just imagining twoweight

dimensions (say for oneweight wandonebiasb), thegradient might beavector with

two orthogonal components, each of which tells us how much the ground slopes in

thew dimension and in theb dimension. Fig. 5.4 showsavisualization of the value

of a2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure5.4 Visualization of thegradient vector at the red point in two dimensionsw and b,

showing thegradient asa red arrow in thex-y plane.

In an actual logistic regression, the parameter vector w ismuch longer than 1 or

2, since the input feature vector x can be quite long, and we need a weight wi for

each xi . For each dimension/variablewi inw (plus thebiasb), thegradient will have

a component that tells us the slope with respect to that variable. Essentially we’re

asking: “How muchwould asmall change in that variablewi influence the total loss

function L?”

In each dimension wi , weexpress theslopeasapartial derivative
∂
∂wi

of the loss

function. Thegradient is then defined asavector of thesepartials. We’ ll represent ŷ

as f (x;q) to make thedependence on q moreobvious:

—qL(f (x;q),y)) =

2

6
6
6
6
4

∂
∂w1
L(f (x;q),y)

∂
∂w2
L(f (x;q),y)

...
∂
∂wn
L(f (x;q),y)

3

7
7
7
7
5

(5.15)

Thefinal equation for updating q based on thegradient is thus

qt+ 1 = qt − h—L(f (x;q),y) (5.16)

We’ll represent ො𝑦 as f (x; θ) to make the dependence on θ more obvious:

The final equation for updating θ based on the gradient is thus

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times thegradient (or theslope, in our single-variableexample):

wt+1 = wt − h
d

dw
f (x;w) (5.14)

Now let’sextend the intuition from a function of onescalar variablew to many

variables, becausewedon’ t just want tomove left or right, wewant to know where

in theN-dimensional space (of theN parameters that makeup q) weshould move.

The gradient is just such a vector; it expresses the directional components of the

sharpest slopealongeachof thoseN dimensions. If we’rejust imagining twoweight

dimensions(say for oneweightwandonebiasb), thegradient might beavector with

two orthogonal components, each of which tells ushow much theground slopes in

thewdimension and in theb dimension. Fig. 5.4 showsavisualization of thevalue

of a2-dimensional gradient vector taken at thered point.

Cost(w,b)

w
b

Figure5.4 Visualization of thegradient vector at thered point in twodimensionswand b,

showing thegradient asaredarrow in thex-y plane.

In an actual logistic regression, theparameter vector w ismuch longer than 1 or

2, since the input feature vector x can be quite long, and we need aweight wi for

each xi. For each dimension/variablewi inw (plusthebiasb), thegradient will have

a component that tells us the slopewith respect to that variable. Essentially we’re

asking: “Howmuchwould asmall change in that variablewi influence thetotal loss

function L?”

In each dimensionwi, weexpress theslopeasapartial derivative
∂
∂wi
of the loss

function. Thegradient is thendefined asavector of thesepartials. We’ ll represent ŷ

as f (x;q) tomakethedependenceonq moreobvious:

—qL(f (x;q),y)) =

2

6
6
6
6
4

∂
∂w1
L(f (x;q),y)

∂
∂w2
L(f (x;q),y)

...
∂
∂wn
L(f (x;q),y)

3

7
7
7
7
5

(5.15)

Thefinal equation for updating q based on thegradient is thus

qt+1 = qt − h—L(f (x;q),y) (5.16)

Regularization

• Add to loss function to prevent overfitting
• A penalty term for better generalization
• 𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟 + 𝜆 ∙ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦

• L1 regularization (lasso).
• 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = σ𝑖 |𝑤𝑖|

• L2 regularization (ridge)
• 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = σ𝑖 𝑤𝑖

2

Perceptron
We will talk briefly about this, but more in the future lecture

Single-layer perceptron

• A single-layer perceptron is also a linear
classifier!

• The activation function is a step-
function, which is non-linear, but the
output decision boundary is linear

• In the future, we will talk about multi-
layer perceptron

First figure from https://www.sciencedirect.com/topics/engineering/perceptron

https://www.sciencedirect.com/topics/engineering/perceptron

Additional resources on ML

https://introml.mit.edu/notes/

https://www.cs.cornell.edu/courses/cs4780/2024sp/

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/

• These are helpful if you want to review ML

https://introml.mit.edu/notes/
https://www.cs.cornell.edu/courses/cs4780/2024sp/
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/

	Slide 1: Linear Classifiers: Naïve Bayes, Logistic Regression
	Slide 2: Logistics
	Slide 3: Review
	Slide 4: Additional comments from last lecture
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Examples of text classification tasks
	Slide 9: Pre-processing text for classification
	Slide 10: Bag of words
	Slide 11: Bag of words
	Slide 12: Bag of words (not always separated by space)
	Slide 13: What about bag of words as… vector?
	Slide 14
	Slide 15: Dealing with sparsity
	Slide 16: Linear classifier
	Slide 17: Naïve Bayes Classifier
	Slide 18
	Slide 19
	Slide 20: Discriminative linear classifier
	Slide 21: f of x , equals bold italic w bullet bold italic x plus b
	Slide 22: Logistic regression
	Slide 23: Logistic regression
	Slide 24
	Slide 25: Sigmoid function
	Slide 26: Let’s go from try to squash f(x) into range (0,1) with sigmoid function
	Slide 27
	Slide 28: Scaling up!
	Slide 29: With multiple input X: y hat equals bold italic sigma open paren bold italic cap X bullet bold italic w plus bold italic b close paren
	Slide 30: Useful note for the future
	Slide 31: Softmax function
	Slide 32: But exactly how do we learn with weights and bias terms?
	Slide 33
	Slide 34: Loss function
	Slide 35: Loss function: the distance between y hat and y
	Slide 36: Deriving cross-entropy loss for a single observation x
	Slide 37: Deriving cross-entropy loss for a single observation x
	Slide 38: Deriving cross-entropy loss for a single observation x
	Slide 39: Our goal: minimize the loss
	Slide 40: Optimization
	Slide 41: Our goal: minimize the loss
	Slide 42: Gradients
	Slide 43: How much do we move in that direction ?
	Slide 44: Real gradients
	Slide 45: The gradient
	Slide 46
	Slide 47: Regularization
	Slide 48: Perceptron
	Slide 49: Single-layer perceptron
	Slide 50: Additional resources on ML

