Linear Classifiers:
Naive Bayes, Logistic Regression

CS 6120 Natural Language Processing
Northeastern University

Si Wu

Logistics

* The first coding assignment was released.
* You can find it on the class website under the syllabus
* Due next Friday 11:59pm on Gradescope
* Gradescope: make sure you select the corresponding pages for each

question
* We just added the late policy for coding assignments on the
course website.
* The late policy doesn’t apply to the in-class quizzes.

* Increased total seats from 59 to 64 for this session to
accommodate a few students on the waitlist.

 Watch out for emails for enrollment if you are on the waitlist

Review

* Lasttime we learned:
* Regular expressions
» Zipf’s law (rank & frequency)
* Conditional probability and chain rule
* First and second order Markov assumption
* Naive bayes, prior, likelihood, posterior
* Maximum likelihood
 Smoothing

* Today: continue more on naive Bayes, and introduce other linear classifiers
* These are supervised machine learning models
« Still little math heavy, but it’s built upon last lecture

* Helpful textbook chapter: Jurafsky and Martin Ch

* Some slides on gradient descent and loss function from this lectures are from this book
chapter too

https://web.stanford.edu/~jurafsky/slp3/4.pdf

Additional comments from last
lecture

Low Bias

High Bias

Low Variance High Variance

A little ML review,

Bias-variance tradeoff neipuTor

understanding MLE vs
Smoothing

Expected Error = Bias? + Variance + Irreducible Error

* Bias: how far your model/estimator’s average prediction is from the true value
* High =2 model is too simple and not learning the pattern of the data = underfitting
* Low = the model can capture the data well
* Variance: how much your model/estimator’s prediction will fluctuate for different training sets
* High - model is too sensitive to training data - overfitting
* Low —> predictions are stable; model can generalize well on different datasets

* You usually can’t minimize both bias and variance at the same time

error

underfitting overfitting

zone . zone
generalization (test)
: ‘
L] ’
. #»
L] ’
. #
L] -‘
. *
. +
. *
. variance

- E E *
[L -
: s *
. . s e’
’ : I
' : e’
: -7 . .
3 et irreducible error
llllllllllllllllllll ‘.I‘IIIIII;III'IIIIIIIIII¥flIIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
" : -
L) -
PP CLn

training error

] s >
model complexity

Examples of text classification tasks

* Sentiment analysis
* Spam detection

* Toxicity detection

* Etc.

Classification: to put a label on a text, and the labels are from some pre-
defined categories
* {positive, negative}
* Movie genre, e.g. {comedy, horror, romantic, scifi}
* Emotion/sentiment, e.g. {happy, sad, worried, sarcastic, despise}
 Languageid, e.g. {English, French, Mandarin, Spanish}

Pre-processing text for classification

* From a string of text, we can

e Use them as s, sort of
* Bag of words
* Then use word count or frequency.
* Turnitinto a more abstract representation

* Feature vectors
* Designed features
* Learned features (unsupervised learning). You need to define the number of dimensions.

Bag of words

Bag of words

English: Potstickers are just pan-fried dumplings

separated by space

Bag of words (not always separated by space)

and grandma

F14J4 4T

Chinese:

separated
by character

dumplings

Q%

separated by
semantic
unit

il
DBLE

)
55
N

Unlike English, Chinese isn’t
space-delimited.

Each characteris an
independent graphological unit,
the more meaningful semantic
unit could be made of one or
more characters.

What about bag of words as...
vector?

Raw text:

“adoctor has a lot of
patients waiting.”

Bag-of-words vector

lot 1
a 2
hospital 0
dumpling |0
is 0
apple 0
doctor 1
of 1

~

This feature vector
will be very sparse
if the vocabulary of
the corpus is huge.
Most of the entry
there will be zero.

o !

Dealing with sparsity

* Dimensionality reduction: project sparse vector to a lower-dimensional

dense space
* Latent semantic analysis (LSA): document-term matrix then SVD

* Principal component analysis (PCA)

* Feature selection:
* Only keeping the most informative words
* E.g. use athreshold for frequency, only keeping words that occur > 100 times

* Weighting schemes:
* TF-IDF: BoW but instead of just word counts, it weights the importance of a word
fora document.
* Using word embeddings and other embeddings
* Much smaller in terms of dimension size
* Next lecture!

Linear classifier

* (Some)naive Bayes, logistic regression, support vector machine, single-
layer perceptron are all linear classifiers

e There are two kinds of linear classifier:

* Generative: try to model how the data was generated for each class (think likelihood
from last lecture about naive Bayes), learn the probability distribution for each class,
then classify (think posterior)

* Naive Bayes classifier
* Discriminative: doesn’t care how the data was generated, instead, directly learn the
boundaries that separate classes
* “linear” classifier measn the decision boundary is linear
* Logistic regression
* Support vector machines (SVM)

Naive Bayes Classifier

§= argmax p(Cy) Hp(arz | Ck)

* [t’s a generative classifier kell,. . K}
c 1=1

e Linear if Bernoulli or multinomial
* Inthe log space:

log p(C | x) 1mg((Cr) l—[;t:i,;-,1)

= logp(Cy) + Z“’*’ - log pri
i=1

=b+w]x

* Optional: you can read more about the math behind it here
https://www.cs.cornell.edu/courses/cs4/780/2018fa/lectures/lectureno

te05.html

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html

Our goal for probabilistic classification
High-levels:

Predicted probability for each
classinY = {y11y2'y3'y4'y5}

Input text P(yilx) =7
f P(yzlx) =7?

X > P(y3lx) =7
P(y4lx) =7

P(yslx) =7

Example

Task: identifying language

x = “l am learning
logistic regression”

f
y1 = English

y, = Spanish

P(English|x)=0.99
P(Spanish|x) =0.005
P(Russian|x) =0.003
P(Mandarin|x) = 0.001

P(Hindi|x) = 0.001

Discriminative linear classifier

* Generally, it can be expressed as:

d
f(X) — zWiXi = WTX+b
=1

or expressed as a dot product of vector w and x:
f(x)=w-x+0b

 Where w is the vector of weights, and b is the bias term, and x is the
feature vector
* Eachw; is corresponding to an x;, and w; is a real number

* This is high-level how we learn from the training data

f(x)=w-x+b

* Each w; learns how important the feature x;
* Ifw; >0, larger x; will make f(x) score go higher
* Ifw; <0, larger x; will make f(x) score go lower
* Ifw; =0, x;isirrelevantto the decision

 However, since W; is areal number, —0 < f(x) < o0

* We need a special function to map/squash f(x) between 0 and 1to get a
valid probability value

- Sigmoid and softmax functions!

Logistic regression

Logistic regression

* |t’s a type of probabilistic classifier
* Each label will get a probability for the text we are classifying on
* |t’s discriminative
* |t’s a linear classifier: decision boundary is linear
* Supervised learning:
* Training: learn the pattern

* Test: how good was the learning?
* All data are labeled

With sigmoid function

Predicted probability for each

/= classinY = {y;,y,}
} e
Input text
e P(y1]x)

P(y,|x)

Smooth and differentiable
Good for gradient-based optimization and gradient
descent for neural network (future lecture)

Sigmoid function

e Forwhen number of labelsis 2, i.e.

binary classification
* E.g. Y={negative, positive}

* This function helps us make the
decision between two classes and
output the probability in the range
(0,1)

e.g.

0 < p(y = "positive” |x) < 1 |
0 <p(y =“negative” |x) < 1
p(y = “positive” |x) + p(y = “negative” |x) =1

Let’s go from try to squash f(x) into range (0,1)
with sigmoid function

fxX)=w-x+b
Apply Sigmoid o to f(x), and we get:

p(y = “positive"l X) = O'(W x4+ b)

1
1+ e~ X"’

Note that sigmoid function o =
We use exp(x) to denote e”*

Then

p(y — "pOSitive"l x) = O'(W -x + b)
1

1+ exp(—(w-x+b))

* Now we know p(y = “positive”| x) , What about
p(y = “negative”| x) ?

e N
p(y = “positive”| x) (Optional whiteboard
activity)
We can prove this!
Since sigmoid has the property of J

o(—x)=1-o0(x)
It’s perfect for binary classification, because now

p(y = “negative”’| x) =1 — p(y = “positive”| x)

Scaling up!

* So far we are only talking about using one input

 What if we have 1000 input that we need to classify? E.g. a batch of
reviews from different people, each review has 100 words?

* This is where we use matrix instead of vector

Before, with vector:
y=0ocWw-x+Db)

With matrix:
y=0(X-w+Db)

With multiple inputX: y = (X - w + b)

w1 4+ Wo10 -+ E]

ry1 T2
uh
E=_XT..LJ+E]= La1 €L [w]-}-b: ’wlitg]_-FT_UgiEgg—Fb
2
T3] T3z W) T3 + WaTgy + b

Apply sigmoid

J{:‘lﬂli"“ + WHoqs + b)
§=o(z) = |o(wiza + wexos + b)
{T{:'w]_ﬁ.-"gl + Walgs + b)

* Eachrow of Xis aninput, of 2 features, and there are 3 input
* Eachrow of w modify a feature
* Notice that bis ascalar

Useful note for the future

= kI = O

* We just talked about , 0.2 - 06 08
f)=w-x+b

-6

* Letthe score z = f(x),zis called the logit, because it is the
Input of sigmoid, and the inverse of sigmoid function is called the
logit function

logit(p) = o 1(p) = ln()forp € (0,1)

1.0

Softmax function

* For multiclass classification, we use softmax instead of sigmoid.
* In the case of logistic regression, it’s call multinomial logistic regression

* Same as sigmoid, it can map values to the range (0,1)

» Given avector z = |24, 2y, Z3, ..., Zx] Where K > 1

;Xp(zz-) l<i<K
ijlexp (zj)

softmax(z;) =

exp (z1) exp(z2) exp(z)
Zf:l exXp (Zi)j Zf{zl exXp (Zi)’ ’ Zf:l exp (zi)

softmax(z) =

But exactly how do we learn with
weights and bias terms?

Loss function and optimization

* Supervised classification:

. We know the correct label y (either O or 1) for each x.
. But what the system produces is an estimate, y

* We want to set wand b to minimize the distance between our
estimate y() and the true y!.
. We need a distance estimator: a loss function or a cost function

* We need an optimization algorithm to update w and b to minimize the
loss.

Loss function

* The goal of loss function is to make the predicted results more

similar to the gold label

* By minimizing the distance between the predicted output and ground
truth

* Thisis how we measure how well the modelis learning

* Acommon loss function is cross-entropy loss function

e More on this later

Loss function: the distance between y andy

We want to know how far is the classifier output:

Yy = o(w-x+b)

from the true output:
y [= either O or 1]

We'll call this difference:

L(y ,y) = how much y differs from the true y

Deriving cross-entropy loss for a single observation x

* Goal: maximize probability of the correct label p(y|x)

* Since there are only 2 discrete outcomes (0 or 1) we can express the
probability p(y|x) from our classifier (the thing we want to maximize) as

p(ylx) = §(1=)""

noting:
if y=1, this simplifiesto y
if y=0, this simplifiesto 1-y

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize: p(y‘x) —)’}y (1 _)’})l—y
Now take the log of both sides (mathematically handy)
Maximize: l()gp(y|x) — lOg [)’}y (1 _)f;)l—)’]

= ylogy+ (1 —y)log(1—7)

Whatever values maximize log p(y|x) will also maximize p(y|x)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize: 10gp(y|x) — lOg [yy (1 _}/})l_y:
= ylogy+ (1 —y)log(1—73)

Now flip sign to turn this into a loss: something to minimize
Cross-entropy loss (because is formula for cross-entropy(y, y))

Minimize: LCE()AG)’) = —logp(y\x) = [ylongL (1 _)’) log(l _)/;)]
Or, plugging in definition of y:
Lce(9,y) = —logo(w-x+b)+(1—y)log(l —o(w-x+Db))|

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights
O=(w,b)

. And we’ll represent y as f (x; 8) to make the dependence on 6 more
obvious

We want the weights that minimize the loss, averaged over all examples:

A

0 = argminlZLCE(f(X(i)§9)a)’<i))
o M

Optimization

* Now that we have a loss function, we need to minimize it
* We minimize by updating weights

* Most common optimization technique is gradient descent, where
we iteratively update our weights

Stochastic Gradient Descent Gradient Descent

e,

Our goal: minimize the loss

For logistic regression, loss function is convex
* Aconvexfunction has justone minimum

* Gradient descent starting from any point is guaranteed to
find the minimum

. (Loss for neural networks is non-convex)

Gradients

* The gradient of a function of many variables is a vector pointing in
the direction of the greatest increase in a function.

* Gradient Descent: Find the gradient of the loss function at the
current point and move in the opposite direction.

How much do we move in that direction ?

 The value of the gradient (slope in our example) ﬁL(f(x; w),y)
weighted by a learning rate n

* Higher learning rate means move w faster

Wl =y — n %L(f(x;w)a)’)

Real gradients

* Are much longer; lots and lots of weights

* For each dimension w; the gradient component j tells us the slope

with respect to that variable.
* “How much would a small change in w;influence the total loss function
L?”
* We express the slope as a partial derivative 0 of the loss ow;

* The gradient is then defined as a vector of these partials.

The gradient

We'll represent ¥ as f (x; ©) to make the dependence on 6 more obvious:

VoL(f(x;0),y)) =

L L(f(x:6).5)

The final equation for updating 6 based on the gradient is thus

61 = 6, —MVL(f(x;0),y)

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L is the loss function
f 1s a function parameterized by 6
x is the set of training inputs x(l), x(z), ey x(
y is the set of training outputs (labels) y(1>, y(z) yeens y(

m)

m)

0<0
repeat til done # see caption
For each training tuple (x(!), y()) (in random order)

1. Optional (for reporting): # How are we doing on this tuple?

Compute () = f(x();0) # What is our estimated output ?

Compute the loss L($(), y()) # How far off is $(!)) from the true output y()9
2. g+ VoL(f(x\¥;0),yd) # How should we move 6 to maximize loss?
3.0<-0 —ng # Go the other way instead

return 6

Regularization

* Add to loss function to prevent overfitting
* Apenalty term for better generalization
* Loss = Error + A- Penalty

* L1 regularization (lasso).
* Penalty =),; |w;]

* L2 regularization (ridge)
e Penalty = Y, w/

Perceptron

We will talk briefly about this, but more in the future lecture

Single-layer perceptron

* A single-layer perceptron is also a linear
classifier!

* The activation function is a step-
function, which is non-linear, but the
output decision boundary is linear

* [n the future, we will talk about multi-
layer perceptron

Weight

Network

: T Activation function
mput function

0.6 :— +]
1, >0
H@%:{o z <0

https://www.sciencedirect.com/topics/engineering/perceptron

Additional resources on ML

https://introml.mit.edu/notes/

https://www.cs.cornell.edu/courses/cs4780/2024sp/

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/

* These are helpful if you want to review ML

https://introml.mit.edu/notes/
https://www.cs.cornell.edu/courses/cs4780/2024sp/
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/

	Slide 1: Linear Classifiers: Naïve Bayes, Logistic Regression
	Slide 2: Logistics
	Slide 3: Review
	Slide 4: Additional comments from last lecture
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Examples of text classification tasks
	Slide 9: Pre-processing text for classification
	Slide 10: Bag of words
	Slide 11: Bag of words
	Slide 12: Bag of words (not always separated by space)
	Slide 13: What about bag of words as… vector?
	Slide 14
	Slide 15: Dealing with sparsity
	Slide 16: Linear classifier
	Slide 17: Naïve Bayes Classifier
	Slide 18
	Slide 19
	Slide 20: Discriminative linear classifier
	Slide 21: f of x , equals bold italic w bullet bold italic x plus b
	Slide 22: Logistic regression
	Slide 23: Logistic regression
	Slide 24
	Slide 25: Sigmoid function
	Slide 26: Let’s go from try to squash f(x) into range (0,1) with sigmoid function
	Slide 27
	Slide 28: Scaling up!
	Slide 29: With multiple input X: y hat equals bold italic sigma open paren bold italic cap X bullet bold italic w plus bold italic b close paren
	Slide 30: Useful note for the future
	Slide 31: Softmax function
	Slide 32: But exactly how do we learn with weights and bias terms?
	Slide 33
	Slide 34: Loss function
	Slide 35: Loss function: the distance between y hat and y
	Slide 36: Deriving cross-entropy loss for a single observation x
	Slide 37: Deriving cross-entropy loss for a single observation x
	Slide 38: Deriving cross-entropy loss for a single observation x
	Slide 39: Our goal: minimize the loss
	Slide 40: Optimization
	Slide 41: Our goal: minimize the loss
	Slide 42: Gradients
	Slide 43: How much do we move in that direction ?
	Slide 44: Real gradients
	Slide 45: The gradient
	Slide 46
	Slide 47: Regularization
	Slide 48: Perceptron
	Slide 49: Single-layer perceptron
	Slide 50: Additional resources on ML

