Linear Classifiers: Naïve Bayes, Logistic Regression

CS 6120 Natural Language Processing
Northeastern University

Si Wu

Logistics

- The first coding assignment was released.
 - You can find it on the class website under the syllabus
 - Due next Friday 11:59pm on Gradescope
 - Gradescope: make sure you select the corresponding pages for each question
- We just added the late policy for coding assignments on the course website.
 - The late policy doesn't apply to the in-class quizzes.
- Increased total seats from 59 to 64 for this session to accommodate a few students on the waitlist.
 - Watch out for emails for enrollment if you are on the waitlist

Review

- Last time we learned:
 - Regular expressions
 - Zipf's law (rank & frequency)
 - Conditional probability and chain rule
 - First and second order Markov assumption
 - Naïve bayes, prior, likelihood, posterior
 - Maximum likelihood
 - Smoothing
- Today: continue more on naive Bayes, and introduce other linear classifiers
 - These are supervised machine learning models
 - Still little math heavy, but it's built upon last lecture
- Helpful textbook chapter: <u>Jurafsky and Martin Chapter 4</u>
 - Some slides on gradient descent and loss function from this lectures are from this book chapter too

Additional comments from last lecture

Bias-variance tradeoff

A little ML review, helpful for understanding MLE vs Smoothing

$$Expected\ Error = Bias^2 + Variance + Irreducible\ Error$$

- **Bias**: how far your model/estimator's average prediction is from the true value
 - High \rightarrow model is too simple and not learning the pattern of the data \rightarrow underfitting
 - Low → the model can capture the data well
- **Variance**: how much your model/estimator's prediction will fluctuate for different training sets
 - High → model is too sensitive to training data → overfitting
 - Low \rightarrow predictions are stable; model can generalize well on different datasets
- You usually can't minimize both bias and variance at the same time

Examples of text classification tasks

- Sentiment analysis
- Spam detection
- Toxicity detection
- Etc.

Classification: to put a **label** on a text, and the labels are from some **pre-defined categories**

- {positive, negative}
- Movie genre, e.g. {comedy, horror, romantic, scifi}
- Emotion/sentiment, e.g. {happy, sad, worried, sarcastic, despise}
- Language id, e.g. {English, French, Mandarin, Spanish}

Pre-processing text for classification

- From a string of text, we can
 - Use them as is, sort of
 - Bag of words
 - Then use word count or frequency.
 - Turn it into a more abstract representation
 - Feature vectors
 - Designed features
 - Learned features (unsupervised learning). You need to define the number of dimensions.

Bag of words

Bag of words

English: Potstickers _ are _ just _ pan-fried _ dumplings

Bag of words (not always separated by space)

Me and grandma (are) making dumplings together

Unlike English, Chinese isn't space-delimited.
Each character is an independent graphological unit, the more meaningful semantic unit could be made of one or more characters.

What about bag of words as... vector?

Bag-of-words vector

Raw text:

"a doctor has a lot of patients waiting."

This feature vector will be very **sparse** if the vocabulary of the corpus is huge. Most of the entry there will be zero.

Dealing with sparsity

- Dimensionality reduction: project sparse vector to a lower-dimensional dense space
 - Latent semantic analysis (LSA): document-term matrix then SVD
 - Principal component analysis (PCA)
- Feature selection:
 - Only keeping the most informative words
 - E.g. use a threshold for frequency, only keeping words that occur > 100 times
- Weighting schemes:
 - TF-IDF: BoW but instead of just word counts, it weights the importance of a word for a document.
- Using word embeddings and other embeddings
 - Much smaller in terms of dimension size
 - Next lecture!

Linear classifier

- (Some)naïve Bayes, logistic regression, support vector machine, single-layer perceptron are all linear classifiers
- There are two kinds of linear classifier:
 - **Generative**: try to model how the data was generated for each class (think likelihood from last lecture about naïve Bayes), learn the probability distribution for each class, then classify (think posterior)
 - Naive Bayes classifier
 - **Discriminative**: doesn't care how the data was generated, instead, directly learn the boundaries that separate classes
 - "linear" classifier measn the decision boundary is linear
 - Logistic regression
 - Support vector machines (SVM)

Naïve Bayes Classifier

- It's a generative classifier
- Linear if Bernoulli or multinomial
- In the log space:

$$egin{aligned} \log p(C_k \mid \mathbf{x}) & \propto \log \Bigg(p(C_k) \prod_{i=1}^n p_{ki}^{x_i} \Bigg) \ &= \log p(C_k) + \sum_{i=1}^n x_i \cdot \log p_{ki} \ &= b + \mathbf{w}_{\iota}^{ op} \mathbf{x} \end{aligned}$$

 $\hat{y} = rgmax_{k \in \{1,\ldots,K\}} p(C_k) \prod_{i=1}^n p(x_i \mid C_k)$

 Optional: you can read more about the math behind it here <u>https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lectureno</u> te05.html

Our goal for probabilistic classification High-level:

Predicted probability for each class in $Y = \{y_1, y_2, y_3, y_4, y_5\}$

Example

Task: identifying language

x = "I am learning logistic regression"

$$P(English|x) = 0.99$$

$$P(Spanish|x) = 0.005$$

$$P(Russian|x) = 0.003$$

$$P(Mandarin|x) = 0.001$$

$$P(Hindi|x) = 0.001$$

Discriminative linear classifier

Generally, it can be expressed as:

$$f(x) = \sum_{i=1}^{d} w_i x_i = w^T x + b$$

or expressed as a dot product of vector \boldsymbol{w} and \boldsymbol{x} :

$$f(x) = \boldsymbol{w} \cdot \boldsymbol{x} + b$$

- Where w is the vector of weights, and b is the bias term, and $oldsymbol{x}$ is the feature vector
- Each w_i is corresponding to an x_i , and w_i is a real number
- This is high-level how we learn from the training data

$$f(x) = \boldsymbol{w} \cdot \boldsymbol{x} + b$$

- Each w_i learns how important the feature x_i
 - If $w_i > 0$, larger x_i will make f(x) score go higher
 - If $w_i < 0$, larger x_i will make f(x) score go lower
 - If $w_i = 0$, x_i is irrelevant to the decision
- However, since w_i is a real number, $-\infty < f(x) < \infty$
 - We need a special function to map/squash f(x) between 0 and 1 to get a valid probability value
 - → Sigmoid and softmax functions!

Logistic regression

Logistic regression

- It's a type of **probabilistic classifier**
 - Each label will get a probability for the text we are classifying on
- It's discriminative
- It's a linear classifier: decision boundary is linear
- Supervised learning:
 - Training: learn the pattern
 - Test: how good was the learning?
 - All data are labeled

With sigmoid function

Predicted probability for each class in $Y = \{y_1, y_2\}$

 $P(y_1|x)$

 $P(y_2|x)$

Smooth and differentiable Good for gradient-based optimization and gradient descent for neural network (future lecture)

Sigmoid function

$$\sigma(x) = rac{1}{1 + e^{-x}} = rac{e^x}{1 + e^x} = 1 - \sigma(-x)$$

- For when number of labels is 2, i.e. binary classification
 - E.g. Y = {negative, positive}
- This function helps us make the decision between two classes and output the probability in the range (0,1)

e.g. 0 < p(y = "positive" | x) < 1 0 < p(y = "negative" | x) < 1 0 < p(y = "negative" | x) < 1 0 < p(y = "positive" | x) + p(y = "negative" | x) = 1

Let's go from try to squash f(x) into range (0,1) with sigmoid function

$$f(x) = \mathbf{w} \cdot \mathbf{x} + b$$

Apply Sigmoid σ to f(x), and we get:

$$p(y = "positive" | x) = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$$

Note that sigmoid function $\sigma = \frac{1}{1+e^{-x}}$. We use $\exp(x)$ to denote e^x

Then

$$p(y = "positive" | x) = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$$
$$= \frac{1}{1 + \exp(-(\mathbf{w} \cdot \mathbf{x} + b))}$$

• Now we know p(y = "positive" | x), What about p(y = "negative" | x)?

$$p(y = "positive" | x)$$

activity) We can prove this!

(Optional whiteboard

Since sigmoid has the property of

$$\sigma(-x) = 1 - \sigma(x)$$

It's perfect for binary classification, because now

$$p(y = "negative" | x) = 1 - p(y = "positive" | x)$$

Scaling up!

- So far we are only talking about using one input
- What if we have 1000 input that we need to classify? E.g. a batch of reviews from different people, each review has 100 words?
- This is where we use matrix instead of vector

Before, with vector:

$$y = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$$

With matrix:

$$\hat{y} = \sigma(X \cdot w + b)$$

With multiple input X: $\hat{y} = \sigma(X \cdot w + b)$

$$z = Xw + b = egin{bmatrix} x_{11} & x_{12} \ x_{21} & x_{22} \ x_{31} & x_{32} \end{bmatrix} egin{bmatrix} w_1 \ w_2 \end{bmatrix} + b = egin{bmatrix} w_1x_{11} + w_2x_{12} + b \ w_1x_{21} + w_2x_{22} + b \ w_1x_{31} + w_2x_{32} + b \end{bmatrix}$$

Apply sigmoid

$$\hat{y} = \sigma(z) = egin{bmatrix} \sigma(w_1x_{11} + w_2x_{12} + b) \ \sigma(w_1x_{21} + w_2x_{22} + b) \ \sigma(w_1x_{31} + w_2x_{32} + b) \end{bmatrix}$$

- Each row of X is an input, of 2 features, and there are 3 input
- Each row of w modify a feature
- Notice that b is a scalar

Useful note for the future

We just talked about

$$f(x) = \boldsymbol{w} \cdot \boldsymbol{x} + b$$

• Let the score z=f(x), z is called the **logit**, because it is the input of sigmoid, and the inverse of sigmoid function is called the logit function

$$logit(p) = \sigma^{-1}(p) = \ln\left(\frac{p}{1-p}\right)$$
 for $p \in (0,1)$

Softmax function

- For multiclass classification, we use softmax instead of sigmoid.
 - In the case of logistic regression, it's call multinomial logistic regression

- Same as sigmoid, it can map values to the range (0,1)
- Given a vector $z = [z_1, z_2, z_3, ..., z_K]$ where K > 1

$$\operatorname{softmax}(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^{K} \exp(z_j)} \quad 1 \le i \le K$$

softmax(
$$\mathbf{z}$$
) = $\left[\frac{\exp(z_1)}{\sum_{i=1}^{K} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{K} \exp(z_i)}, ..., \frac{\exp(z_K)}{\sum_{i=1}^{K} \exp(z_i)}\right]$

But exactly how do we learn with weights and bias terms?

Loss function and optimization

- Supervised classification:
 - We know the correct label y (either 0 or 1) for each x.
 - But what the system produces is an estimate, \hat{y}
- We want to set w and b to minimize the **distance** between our estimate $\hat{y}^{(i)}$ and the true $y^{(i)}$.
 - We need a distance estimator: a loss function or a cost function
 - We need an optimization algorithm to update w and b to minimize the loss.

Loss function

- The goal of loss function is to make the predicted results more similar to the gold label
 - By minimizing the distance between the predicted output and ground truth
 - This is how we measure how well the model is learning

- A common loss function is cross-entropy loss function
- More on this later

Loss function: the distance between \hat{y} and y

We want to know how far is the classifier output:

$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

from the true output:

```
y [= either 0 or 1]
```

We'll call this difference:

```
L(\hat{y}, y) = how much \hat{y} differs from the true y
```

Deriving cross-entropy loss for a single observation x

- Goal: maximize probability of the correct label p(y|x)
- Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x) from our classifier (the thing we want to maximize) as

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

noting:

if y=1, this simplifies to \hat{y} if y=0, this simplifies to $1-\hat{y}$

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$p(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$$

Now take the log of both sides (mathematically handy)

Maximize:
$$\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y}\right]$$

$$= y \log \hat{y} + (1-y) \log (1-\hat{y})$$

Whatever values maximize log p(y|x) will also maximize p(y|x)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y}\right]$$
$$= y \log \hat{y} + (1-y) \log(1-\hat{y})$$

Now flip sign to turn this into a loss: something to minimize

Cross-entropy loss (because is formula for cross-entropy(y, \hat{y}))

Minimize:
$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

Or, plugging in definition of \hat{y} :

$$L_{\text{CE}}(\hat{y}, y) = -\left[y\log\sigma(w\cdot x + b) + (1 - y)\log(1 - \sigma(w\cdot x + b))\right]$$

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights θ =(w,b)

• And we'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(f(x^{(i)}; \theta), y^{(i)})$$

Optimization

- Now that we have a loss function, we need to minimize it
 - We minimize by updating weights
- Most common optimization technique is gradient descent, where we iteratively update our weights

Our goal: minimize the loss

For logistic regression, loss function is **convex**

- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
 - (Loss for neural networks is non-convex)

Gradients

• The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

• **Gradient Descent**: Find the gradient of the loss function at the current point and move in the **opposite** direction.

How much do we move in that direction?

- The value of the gradient (slope in our example) $\frac{d}{dw}L(f(x;w),y)$ weighted by a **learning rate** η
- Higher learning rate means move w faster

$$w^{t+1} = w^t - \eta \frac{d}{dw} L(f(x; w), y)$$

Real gradients

- Are much longer; lots and lots of weights
- For each dimension w_i the gradient component i tells us the slope with respect to that variable.
 - "How much would a small change in w_i influence the total loss function L?"
 - We express the slope as a partial derivative ∂ of the loss ∂w_i
- The gradient is then defined as a vector of these partials.

The gradient

We'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious:

$$\nabla_{\theta} L(f(x;\theta),y)) = \begin{bmatrix} \frac{\partial}{\partial w_1} L(f(x;\theta),y) \\ \frac{\partial}{\partial w_2} L(f(x;\theta),y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x;\theta),y) \end{bmatrix}$$

The final equation for updating θ based on the gradient is thus

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$

```
function Stochastic Gradient Descent(L(), f(), x, y) returns \theta
     # where: L is the loss function
             f is a function parameterized by \theta
             x is the set of training inputs x^{(1)}, x^{(2)}, ..., x^{(m)}
y is the set of training outputs (labels) y^{(1)}, y^{(2)}, ..., y^{(m)}
\theta \leftarrow 0
repeat til done # see caption
   For each training tuple (x^{(i)}, y^{(i)}) (in random order)
      1. Optional (for reporting):
                                           # How are we doing on this tuple?
         Compute \hat{y}^{(i)} = f(x^{(i)}; \theta) # What is our estimated output \hat{y}?
         Compute the loss L(\hat{y}^{(i)}, y^{(i)}) # How far off is \hat{y}^{(i)}) from the true output y^{(i)}?
      2. g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})
                                                 # How should we move \theta to maximize loss?
      3. \theta \leftarrow \theta - \eta g
                                                  # Go the other way instead
return \theta
```

Regularization

- Add to loss function to prevent overfitting
 - A penalty term for better generalization
 - $Loss = Error + \lambda \cdot Penalty$
- L1 regularization (lasso).
 - $Penalty = \sum_{i} |w_{i}|$
- L2 regularization (ridge)
 - $Penalty = \sum_{i} w_i^2$

Perceptron

We will talk briefly about this, but more in the future lecture

Single-layer perceptron

- A single-layer perceptron is also a linear classifier!
- The activation function is a stepfunction, which is non-linear, but the output decision boundary is linear
- In the future, we will talk about multilayer perceptron

Additional resources on ML

https://introml.mit.edu/notes/

https://www.cs.cornell.edu/courses/cs4780/2024sp/

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/

These are helpful if you want to review ML